
Fundamentals of

 Deep
 Learning
DESIGNING NEXT-GENERATION
MACHINE INTELLIGENCE ALGORITHMS

Nikhil Buduma
with contributions by Nicholas Locascio

Nikhil Buduma

Fundamentals of Deep Learning
Designing Next-Generation Machine

Intelligence Algorithms

with contributions by Nicholas Locascio

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-92561-4

[LSI]

Fundamentals of Deep Learning
by Nikhil Buduma and Nicholas Lacascio

Copyright © 2017 Nikhil Buduma. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Shannon Cutt
Production Editor: Shiny Kalapurakkel
Copyeditor: Sonia Saruba
Proofreader: Amanda Kersey

Indexer: Wendy Catalano
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

June 2017: First Edition

Revision History for the First Edition
2017-05-25: First Release
2017-07-07: Second Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Fundamentals of Deep Learning, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

Table of Contents

Preface. ix

1. The Neural Network. 1
Building Intelligent Machines 1
The Limits of Traditional Computer Programs 2
The Mechanics of Machine Learning 3
The Neuron 7
Expressing Linear Perceptrons as Neurons 8
Feed-Forward Neural Networks 9
Linear Neurons and Their Limitations 12
Sigmoid, Tanh, and ReLU Neurons 13
Softmax Output Layers 15
Looking Forward 15

2. Training Feed-Forward Neural Networks. 17
The Fast-Food Problem 17
Gradient Descent 19
The Delta Rule and Learning Rates 21
Gradient Descent with Sigmoidal Neurons 22
The Backpropagation Algorithm 23
Stochastic and Minibatch Gradient Descent 25
Test Sets, Validation Sets, and Overfitting 27
Preventing Overfitting in Deep Neural Networks 34
Summary 37

3. Implementing Neural Networks in TensorFlow. 39
What Is TensorFlow? 39
How Does TensorFlow Compare to Alternatives? 40

iii

Installing TensorFlow 41
Creating and Manipulating TensorFlow Variables 43
TensorFlow Operations 45
Placeholder Tensors 45
Sessions in TensorFlow 46
Navigating Variable Scopes and Sharing Variables 48
Managing Models over the CPU and GPU 51
Specifying the Logistic Regression Model in TensorFlow 52
Logging and Training the Logistic Regression Model 55
Leveraging TensorBoard to Visualize Computation Graphs and Learning 58
Building a Multilayer Model for MNIST in TensorFlow 59
Summary 62

4. Beyond Gradient Descent. 63
The Challenges with Gradient Descent 63
Local Minima in the Error Surfaces of Deep Networks 64
Model Identifiability 65
How Pesky Are Spurious Local Minima in Deep Networks? 66
Flat Regions in the Error Surface 69
When the Gradient Points in the Wrong Direction 71
Momentum-Based Optimization 74
A Brief View of Second-Order Methods 77
Learning Rate Adaptation 78

AdaGrad—Accumulating Historical Gradients 79
RMSProp—Exponentially Weighted Moving Average of Gradients 80
Adam—Combining Momentum and RMSProp 81

The Philosophy Behind Optimizer Selection 83
Summary 83

5. Convolutional Neural Networks. 85
Neurons in Human Vision 85
The Shortcomings of Feature Selection 86
Vanilla Deep Neural Networks Don’t Scale 89
Filters and Feature Maps 90
Full Description of the Convolutional Layer 95
Max Pooling 98
Full Architectural Description of Convolution Networks 99
Closing the Loop on MNIST with Convolutional Networks 101
Image Preprocessing Pipelines Enable More Robust Models 103
Accelerating Training with Batch Normalization 104
Building a Convolutional Network for CIFAR-10 107
Visualizing Learning in Convolutional Networks 109

iv | Table of Contents

Leveraging Convolutional Filters to Replicate Artistic Styles 113
Learning Convolutional Filters for Other Problem Domains 114
Summary 115

6. Embedding and Representation Learning. 117
Learning Lower-Dimensional Representations 117
Principal Component Analysis 118
Motivating the Autoencoder Architecture 120
Implementing an Autoencoder in TensorFlow 121
Denoising to Force Robust Representations 134
Sparsity in Autoencoders 137
When Context Is More Informative than the Input Vector 140
The Word2Vec Framework 143
Implementing the Skip-Gram Architecture 146
Summary 152

7. Models for Sequence Analysis. 153
Analyzing Variable-Length Inputs 153
Tackling seq2seq with Neural N-Grams 155
Implementing a Part-of-Speech Tagger 156
Dependency Parsing and SyntaxNet 164
Beam Search and Global Normalization 168
A Case for Stateful Deep Learning Models 172
Recurrent Neural Networks 173
The Challenges with Vanishing Gradients 176
Long Short-Term Memory (LSTM) Units 178
TensorFlow Primitives for RNN Models 183
Implementing a Sentiment Analysis Model 185
Solving seq2seq Tasks with Recurrent Neural Networks 189
Augmenting Recurrent Networks with Attention 191
Dissecting a Neural Translation Network 194
Summary 217

8. Memory Augmented Neural Networks. 219
Neural Turing Machines 219
Attention-Based Memory Access 221
NTM Memory Addressing Mechanisms 223
Differentiable Neural Computers 226
Interference-Free Writing in DNCs 229
DNC Memory Reuse 230
Temporal Linking of DNC Writes 231
Understanding the DNC Read Head 232

Table of Contents | v

The DNC Controller Network 232
Visualizing the DNC in Action 234
Implementing the DNC in TensorFlow 237
Teaching a DNC to Read and Comprehend 242
Summary 244

9. Deep Reinforcement Learning. 245
Deep Reinforcement Learning Masters Atari Games 245
What Is Reinforcement Learning? 247
Markov Decision Processes (MDP) 248

Policy 249
Future Return 250
Discounted Future Return 251

Explore Versus Exploit 251
Policy Versus Value Learning 253

Policy Learning via Policy Gradients 254
Pole-Cart with Policy Gradients 254

OpenAI Gym 254
Creating an Agent 255
Building the Model and Optimizer 257
Sampling Actions 257
Keeping Track of History 257
Policy Gradient Main Function 258
PGAgent Performance on Pole-Cart 260

Q-Learning and Deep Q-Networks 261
The Bellman Equation 261
Issues with Value Iteration 262
Approximating the Q-Function 262
Deep Q-Network (DQN) 263
Training DQN 263
Learning Stability 263
Target Q-Network 264
Experience Replay 264
From Q-Function to Policy 264
DQN and the Markov Assumption 265
DQN’s Solution to the Markov Assumption 265
Playing Breakout wth DQN 265
Building Our Architecture 268
Stacking Frames 268
Setting Up Training Operations 268
Updating Our Target Q-Network 269
Implementing Experience Replay 269

vi | Table of Contents

DQN Main Loop 270
DQNAgent Results on Breakout 272

Improving and Moving Beyond DQN 273
Deep Recurrent Q-Networks (DRQN) 273
Asynchronous Advantage Actor-Critic Agent (A3C) 274
UNsupervised REinforcement and Auxiliary Learning (UNREAL) 275

Summary 276

Index. 277

Table of Contents | vii

Preface

With the reinvigoration of neural networks in the 2000s, deep learning has become
an extremely active area of research that is paving the way for modern machine learn‐
ing. This book uses exposition and examples to help you understand major concepts
in this complicated field. Large companies such as Google, Microsoft, and Facebook
have taken notice and are actively growing in-house deep learning teams. For the rest
of us, deep learning is still a pretty complex and difficult subject to grasp. Research
papers are filled to the brim with jargon, and scattered online tutorials do little to
help build a strong intuition for why and how deep learning practitioners approach
problems. Our goal is to bridge this gap.

Prerequisites and Objectives
This booked is aimed an audience with a basic operating understanding of calculus,
matrices, and Python programming. Approaching this material without this back‐
ground is possible, but likely to be more challenging. Background in linear algebra
may also be helpful in navigating certain sections of mathematical exposition.

By the end of the book, we hope that our readers will be left with an intuition for how
to approach problems using deep learning, the historical context for modern deep
learning approaches, and a familiarity with implementing deep learning algorithms
using the TensorFlow open source library.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

ix

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/darksigma/Fundamentals-of-Deep-Learning-Book.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Fundamentals of Deep Learning by
Nikhil Buduma and Nicholas Locascio (O’Reilly). Copyright 2017 Nikhil Buduma
and Nicholas Locascio, 978-1-491-92561-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

x | Preface

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgements
We’d like to thank several people who have been instrumental in the completion of
this text. We’d like to start by acknowledging Mostafa Samir and Surya Bhupatiraju,
who contributed heavily to the content of Chapters 7 and 8. We also appreciate the
contributions of Mohamed (Hassan) Kane and Anish Athalye, who worked on early
versions of the code examples in this book’s Github repository.

This book would not have been possible without the never-ending support and
expertise of our editor, Shannon Cutt. We’d also like to appreciate the commentary
provided by our reviewers, Isaac Hodes, David Andrzejewski, and Aaron Schu‐
macher, who provided thoughtful, in-depth commentary on the original drafts of the
text. Finally, we are thankful for all of the insight provided by our friends and family

Preface | xi

members, including Jeff Dean, Nithin Buduma, Venkat Buduma, and William, Jack,
as we finalized the manuscript of the text.

xii | Preface

1 Kuhn, Deanna, et al. Handbook of Child Psychology. Vol. 2, Cognition, Perception, and Language. Wiley, 1998.

CHAPTER 1

The Neural Network

Building Intelligent Machines
The brain is the most incredible organ in the human body. It dictates the way we per‐
ceive every sight, sound, smell, taste, and touch. It enables us to store memories,
experience emotions, and even dream. Without it, we would be primitive organ‐
isms, incapable of anything other than the simplest of reflexes. The brain is, inher‐
ently, what makes us intelligent.

The infant brain only weighs a single pound, but somehow it solves problems that
even our biggest, most powerful supercomputers find impossible. Within a matter of
months after birth, infants can recognize the faces of their parents, discern discrete
objects from their backgrounds, and even tell apart voices. Within a year, they’ve
already developed an intuition for natural physics, can track objects even when they
become partially or completely blocked, and can associate sounds with specific mean‐
ings. And by early childhood, they have a sophisticated understanding of grammar
and thousands of words in their vocabularies.1

For decades, we’ve dreamed of building intelligent machines with brains like ours—
robotic assistants to clean our homes, cars that drive themselves, microscopes that
automatically detect diseases. But building these artificially intelligent machines
requires us to solve some of the most complex computational problems we have ever
grappled with; problems that our brains can already solve in a manner of microsec‐
onds. To tackle these problems, we’ll have to develop a radically different way of pro‐
gramming a computer using techniques largely developed over the past decade. This

1

2 Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-Based Learning Applied to Document Recognition”
Proceedings of the IEEE, 86(11):2278-2324, November 1998.

is an extremely active field of artificial computer intelligence often referred to as deep
learning.

The Limits of Traditional Computer Programs
Why exactly are certain problems so difficult for computers to solve? Well, it turns
out that traditional computer programs are designed to be very good at two things: 1)
performing arithmetic really fast and 2) explicitly following a list of instructions. So if
you want to do some heavy financial number crunching, you’re in luck. Traditional
computer programs can do the trick. But let’s say we want to do something slightly
more interesting, like write a program to automatically read someone’s handwriting.
Figure 1-1 will serve as a starting point.

Figure 1-1. Image from MNIST handwritten digit dataset2

Although every digit in Figure 1-1 is written in a slightly different way, we can easily
recognize every digit in the first row as a zero, every digit in the second row as a one,
etc. Let’s try to write a computer program to crack this task. What rules could we use
to tell one digit from another?

Well, we can start simple! For example, we might state that we have a zero if our
image only has a single, closed loop. All the examples in Figure 1-1 seem to fit this
bill, but this isn’t really a sufficient condition. What if someone doesn’t perfectly close

2 | Chapter 1: The Neural Network

the loop on their zero? And, as in Figure 1-2, how do you distinguish a messy zero
from a six?

Figure 1-2. A zero that’s algorithmically difficult to distinguish from a six

You could potentially establish some sort of cutoff for the distance between the start‐
ing point of the loop and the ending point, but it’s not exactly clear where we should
be drawing the line. But this dilemma is only the beginning of our worries. How do
we distinguish between threes and fives? Or between fours and nines? We can add
more and more rules, or features, through careful observation and months of trial and
error, but it’s quite clear that this isn’t going to be an easy process.

Many other classes of problems fall into this same category: object recognition,
speech comprehension, automated translation, etc. We don’t know what program to
write because we don’t know how it’s done by our brains. And even if we did know
how to do it, the program might be horrendously complicated.

The Mechanics of Machine Learning
To tackle these classes of problems, we’ll have to use a very different kind of
approach. A lot of the things we learn in school growing up have a lot in common
with traditional computer programs. We learn how to multiply numbers, solve equa‐
tions, and take derivatives by internalizing a set of instructions. But the things we
learn at an extremely early age, the things we find most natural, are learned by exam‐
ple, not by formula.

For instance, when we were two years old, our parents didn’t teach us how to recog‐
nize a dog by measuring the shape of its nose or the contours of its body. We learned
to recognize a dog by being shown multiple examples and being corrected when we
made the wrong guess. In other words, when we were born, our brains provided us
with a model that described how we would be able to see the world. As we grew up,
that model would take in our sensory inputs and make a guess about what we were

The Mechanics of Machine Learning | 3

experiencing. If that guess was confirmed by our parents, our model would be rein‐
forced. If our parents said we were wrong, we’d modify our model to incorporate this
new information. Over our lifetime, our model becomes more and more accurate as
we assimilate more and more examples. Obviously all of this happens subconsciously,
without us even realizing it, but we can use this to our advantage nonetheless.

Deep learning is a subset of a more general field of artificial intelligence
called machine learning, which is predicated on this idea of learning from example. In
machine learning, instead of teaching a computer a massive list of rules to solve the
problem, we give it a model with which it can evaluate examples, and a small set of
instructions to modify the model when it makes a mistake. We expect that, over
time, a well-suited model would be able to solve the problem extremely accurately.

Let’s be a little bit more rigorous about what this means so we can formulate this idea
mathematically. Let’s define our model to be a function h �, θ . The input x is an
example expressed in vector form. For example, if x were a grayscale image, the vec‐
tor’s components would be pixel intensities at each position, as shown in Figure 1-3.

Figure 1-3. The process of vectorizing an image for a machine learning algorithm

The input θ is a vector of the parameters that our model uses. Our machine learning
program tries to perfect the values of these parameters as it is exposed to more and
more examples. We’ll see this in action and in more detail in Chapter 2.

To develop a more intuitive understanding for machine learning models, let’s walk
through a quick example. Let’s say we wanted to determine how to predict exam per‐
formance based on the number of hours of sleep we get and the number of hours we
study the previous day. We collect a lot of data, and for each data point � = x1 x2

T,
we record the number of hours of sleep we got (x1), the number of hours we spent
studying (x2), and whether we performed above or below the class average. Our goal,
then, might be to learn a model h �, θ with parameter vector θ = θ0 θ1 θ2

T such
that:

4 | Chapter 1: The Neural Network

3 Rosenblatt, Frank. “The perceptron: A probabilistic model for information storage and organization in the
brain.” Psychological Review 65.6 (1958): 386.

h �, θ =

−1 if �T ·
θ1

θ2
+ θ0 < 0

1 if �T ·
θ1

θ2
+ θ0 ≥ 0

In other words, we guess that the blueprint for our model h �, θ is as described
above (geometrically, this particular blueprint describes a linear classifier that divides
the coordinate plane into two halves). Then, we want to learn a parameter vec‐
tor θ such that our model makes the right predictions (−1 if we perform below aver‐
age, and 1 otherwise) given an input example x. This model is called a linear
perceptron, and it’s a model that’s been used since the 1950s.3 Let’s assume our data is
as shown in Figure 1-4.

Figure 1-4. Sample data for our exam predictor algorithm and a potential classifier

The Mechanics of Machine Learning | 5

4 Bubeck, Sébastien. “Convex optimization: Algorithms and complexity.” Foundations and Trends® in Machine
Learning. 8.3-4 (2015): 231-357.

Then it turns out, by selecting θ = −24 3 4 T, our machine learning model makes
the correct prediction on every data point:

 h �, θ =
−1 if 3x1 + 4x2 − 24 < 0

1 if 3x1 + 4x2 − 24 ≥ 0

An optimal parameter vector θ positions the classifier so that we make as many cor‐
rect predictions as possible. In most cases, there are many (or even infinitely
many) possible choices for θ that are optimal. Fortunately for us, most of the time
these alternatives are so close to one another that the difference is negligible. If this is
not the case, we may want to collect more data to narrow our choice of θ.

While the setup seems reasonable, there are still some pretty significant questions
that remain. First off, how do we even come up with an optimal value for the parame‐
ter vector θ in the first place? Solving this problem requires a technique commonly
known as optimization. An optimizer aims to maximize the performance of a
machine learning model by iteratively tweaking its parameters until the error is mini‐
mized. We’ll begin to tackle this question of learning parameter vectors in more detail
in Chapter 2, when we describe the process of gradient descent.4 In later chapters, we’ll
try to find ways to make this process even more efficient.

Second, it’s quite clear that this particular model (the linear perceptron model) is
quite limited in the relationships it can learn. For example, the distributions of data
shown in Figure 1-5 cannot be described well by a linear perceptron.

Figure 1-5. As our data takes on more complex forms, we need more complex models to
describe them

But these situations are only the tip of the iceberg. As we move on to much more
complex problems, such as object recognition and text analysis, our data becomes
extremely high dimensional, and the relationships we want to capture become highly

6 | Chapter 1: The Neural Network

5 Restak, Richard M. and David Grubin. The Secret Life of the Brain. Joseph Henry Press, 2001.

nonlinear. To accommodate this complexity, recent research in machine learning has
attempted to build models that resemble the structures utilized by our brains. It’s
essentially this body of research, commonly referred to as deep learning, that has had
spectacular success in tackling problems in computer vision and natural language
processing. These algorithms not only far surpass other kinds of machine learning
algorithms, but also rival (or even exceed!) the accuracies achieved by humans.

The Neuron
The foundational unit of the human brain is the neuron. A tiny piece of the brain,
about the size of grain of rice, contains over 10,000 neurons, each of which forms an
average of 6,000 connections with other neurons.5 It’s this massive biological network
that enables us to experience the world around us. Our goal in this section will be to
use this natural structure to build machine learning models that solve problems in an
analogous way.

At its core, the neuron is optimized to receive information from other neurons, pro‐
cess this information in a unique way, and send its result to other cells. This process is
summarized in Figure 1-6. The neuron receives its inputs along antennae-like struc‐
tures called dendrites. Each of these incoming connections is dynamically strength‐
ened or weakened based on how often it is used (this is how we learn new concepts!),
and it’s the strength of each connection that determines the contribution of the input
to the neuron’s output. After being weighted by the strength of their respective con‐
nections, the inputs are summed together in the cell body. This sum is then trans‐
formed into a new signal that’s propagated along the cell’s axon and sent off to other
neurons.

Figure 1-6. A functional description of a biological neuron’s structure

The Neuron | 7

6 McCulloch, Warren S., and Walter Pitts. “A logical calculus of the ideas immanent in nervous activity.” The
Bulletin of Mathematical Biophysics. 5.4 (1943): 115-133.

We can translate this functional understanding of the neurons in our brain into an
artificial model that we can represent on our computer. Such a model is described
in Figure 1-7, leveraging the approach first pioneered in 1943 by Warren S. McCul‐
loch and Walter H. Pitts.6 Just as in biological neurons, our artificial neuron takes in
some number of inputs, x1, x2, . . . , xn, each of which is multiplied by a specific
weight, w1, w2, . . . , wn. These weighted inputs are, as before, summed together to
produce the logit of the neuron, z = ∑i = 0

n wixi. In many cases, the logit also includes
a bias, which is a constant (not shown in the figure). The logit is then passed through
a function f to produce the output y = f z . This output can be transmitted to other
neurons.

Figure 1-7. Schematic for a neuron in an artificial neural net

We’ll conclude our mathematical discussion of the artificial neuron by re-expressing
its functionality in vector form. Let’s reformulate the inputs as a vector x = [x1 x2 ... xn]
and the weights of the neuron as w = [w1 w2 ... wn]. Then we can re-express the output
of the neuron as y = f � · � + b , where b is the bias term. In other words, we can
compute the output by performing the dot product of the input and weight vectors,
adding in the bias term to produce the logit, and then applying the transformation
function. While this seems like a trivial reformulation, thinking about neurons as a
series of vector manipulations will be crucial to how we implement them in software
later in this book.

Expressing Linear Perceptrons as Neurons
In “The Mechanics of Machine Learning” on page 3, we talked about using machine
learning models to capture the relationship between success on exams and time spent
studying and sleeping. To tackle this problem, we constructed a linear perceptron
classifier that divided the Cartesian coordinate plane into two halves:

8 | Chapter 1: The Neural Network

 h �, θ =
−1 if 3x1 + 4x2 − 24 < 0

1 if 3x1 + 4x2 − 24 ≥ 0

As shown in Figure 1-4, this is an optimal choice for θ because it correctly classifies
every sample in our dataset. Here, we show that our model h is easily using a neuron.
Consider the neuron depicted in Figure 1-8. The neuron has two inputs, a bias, and
uses the function:

 f z =
−1 if z < 0
1 if z ≥ 0

It’s very easy to show that our linear perceptron and the neuronal model are perfectly
equivalent. And in general, it’s quite simple to show that singular neurons are strictly
more expressive than linear perceptrons. In other words, every linear perceptron can
be expressed as a single neuron, but single neurons can also express models that can‐
not be expressed by any linear perceptron.

Figure 1-8. Expressing our exam performance perceptron as a neuron

Feed-Forward Neural Networks
Although single neurons are more powerful than linear perceptrons, they’re not
nearly expressive enough to solve complicated learning problems. There’s a reason
our brain is made of more than one neuron. For example, it is impossible for a single
neuron to differentiate handwritten digits. So to tackle much more complicated tasks,
we’ll have to take our machine learning model even further.

The neurons in the human brain are organized in layers. In fact, the human cerebral
cortex (the structure responsible for most of human intelligence) is made up of six

Feed-Forward Neural Networks | 9

7 Mountcastle, Vernon B. “Modality and topographic properties of single neurons of cat’s somatic sensory cor‐
tex.” Journal of Neurophysiology 20.4 (1957): 408-434.

layers.7 Information flows from one layer to another until sensory input is converted
into conceptual understanding. For example, the bottommost layer of the visual cor‐
tex receives raw visual data from the eyes. This information is processed by each layer
and passed on to the next until, in the sixth layer, we conclude whether we are look‐
ing at a cat, or a soda can, or an airplane. Figure 1-9 shows a more simplified version
of these layers.

Figure 1-9. A simple example of a feed-forward neural network with three layers (input,
one hidden, and output) and three neurons per layer

Borrowing from these concepts, we can construct an artificial neural network. A neu‐
ral network comes about when we start hooking up neurons to each other, the input
data, and to the output nodes, which correspond to the network’s answer to a learn‐
ing problem. Figure 1-9 demonstrates a simple example of an artificial neural net‐
work, similar to the architecture described in McCulloch and Pitt’s work in 1943. The

10 | Chapter 1: The Neural Network

bottom layer of the network pulls in the input data. The top layer of neurons (output
nodes) computes our final answer. The middle layer(s) of neurons are called the hid‐
den layers, and we let wi, j

k be the weight of the connection between the ith neuron in
the kth layer with the jth neuron in the k + 1st layer. These weights constitute our
parameter vector, θ, and just as before, our ability to solve problems with neural net‐
works depends on finding the optimal values to plug into θ.

We note that in this example, connections only traverse from a lower layer to a higher
layer. There are no connections between neurons in the same layer, and there are no
connections that transmit data from a higher layer to a lower layer. These neural net‐
works are called feed-forward networks, and we start by discussing these networks
because they are the simplest to analyze. We present this analysis (specifically, the
process of selecting the optimal values for the weights) in Chapter 2. More compli‐
cated connectivities will be addressed in later chapters.

In the final sections, we’ll discuss the major types of layers that are utilized in feed-
forward neural networks. But before we proceed, here’s a couple of important notes
to keep in mind:

1. As we mentioned, the layers of neurons that lie sandwiched between the first
layer of neurons (input layer) and the last layer of neurons (output layer) are
called the hidden layers. This is where most of the magic is happening when the
neural net tries to solve problems. Whereas (as in the handwritten digit example)
we would previously have to spend a lot of time identifying useful features, the
hidden layers automate this process for us. Oftentimes, taking a look at the activi‐
ties of hidden layers can tell you a lot about the features the network has auto‐
matically learned to extract from the data.

2. Although in this example every layer has the same number of neurons, this is
neither necessary nor recommended. More often than not, hidden layers have
fewer neurons than the input layer to force the network to learn compressed rep‐
resentations of the original input. For example, while our eyes obtain raw pixel
values from our surroundings, our brain thinks in terms of edges and contours.
This is because the hidden layers of biological neurons in our brain force us to
come up with better representations for everything we perceive.

3. It is not required that every neuron has its output connected to the inputs of all
neurons in the next layer. In fact, selecting which neurons to connect to which
other neurons in the next layer is an art that comes from experience. We’ll dis‐
cuss this issue in more depth as we work through various examples of neural net‐
works.

4. The inputs and outputs are vectorized representations. For example, you might
imagine a neural network where the inputs are the individual pixel RGB values in
an image represented as a vector (refer to Figure 1-3). The last layer might have
two neurons that correspond to the answer to our problem: 1, 0 if the image

Feed-Forward Neural Networks | 11

contains a dog, 0, 1 if the image contains a cat, 1, 1 if it contains both,
and 0, 0 if it contains neither.

We’ll also observe that, similarly to our reformulation for the neuron, we can also
mathematically express a neural network as a series of vector and matrix operations.
Let’s consider the input to the ith layer of the network to be a vector x = [x1 x2 ... xn].
We’d like to find the vector y = [y1 y2 ... ym] produced by propagating the input
through the neurons. We can express this as a simple matrix multiply if we construct
a weight matrix � of size n × m and a bias vector of size m. In this matrix, each col‐
umn corresponds to a neuron, where the jth element of the column corresponds to
the weight of the connection pulling in the jth element of the input. In other words, y
= ƒ(WTx + b), where the transformation function is applied to the vector element-
wise. This reformulation will become all the more critical as we begin to implement
these networks in software.

Linear Neurons and Their Limitations
Most neuron types are defined by the function f they apply to their logit z. Let’s first
consider layers of neurons that use a linear function in the form of f z = az + b. For
example, a neuron that attempts to estimate a cost of a meal in a fast-food restaurant
would use a linear neuron where a = 1 and b = 0. In other words, using f z = z and
weights equal to the price of each item, the linear neuron in Figure 1-10 would take in
some ordered triple of servings of burgers, fries, and sodas and output the price of the
combination.

Figure 1-10. An example of a linear neuron

Linear neurons are easy to compute with, but they run into serious limitations. In
fact, it can be shown that any feed-forward neural network consisting of only linear

12 | Chapter 1: The Neural Network

neurons can be expressed as a network with no hidden layers. This is problematic
because, as we discussed before, hidden layers are what enable us to learn important
features from the input data. In other words, in order to learn complex relationships,
we need to use neurons that employ some sort of nonlinearity.

Sigmoid, Tanh, and ReLU Neurons
There are three major types of neurons that are used in practice that introduce nonli‐
nearities in their computations. The first of these is the sigmoid neuron, which uses
the function:

 f z = 1

1 + e−z

Intuitively, this means that when the logit is very small, the output of a logistic neu‐
ron is very close to 0. When the logit is very large, the output of the logistic neuron is
close to 1. In-between these two extremes, the neuron assumes an S-shape, as shown
in Figure 1-11.

Figure 1-11. The output of a sigmoid neuron as z varies

Tanh neurons use a similar kind of S-shaped nonlinearity, but instead of ranging from
0 to 1, the output of tanh neurons range from −1 to 1. As one would expect, they
use f z = tanh z . The resulting relationship between the output y and the logit z is
described by Figure 1-12. When S-shaped nonlinearities are used, the tanh neuron is
often preferred over the sigmoid neuron because it is zero-centered.

Sigmoid, Tanh, and ReLU Neurons | 13

Figure 1-12. The output of a tanh neuron as z varies

A different kind of nonlinearity is used by the restricted linear unit (ReLU) neuron. It
uses the function f z = max 0, z , resulting in a characteristic hockey-stick-shaped
response, as shown in Figure 1-13.

Figure 1-13. The output of a ReLU neuron as z varies

14 | Chapter 1: The Neural Network

8 Nair, Vinod, and Geoffrey E. Hinton. “Rectified Linear Units Improve Restricted Boltzmann Machines” Pro‐
ceedings of the 27th International Conference on Machine Learning (ICML-10), 2010.

The ReLU has recently become the neuron of choice for many tasks (especially in
computer vision) for a number of reasons, despite some drawbacks.8 We’ll discuss
these reasons in Chapter 5, as well as strategies to combat the potential pitfalls.

Softmax Output Layers
Oftentimes, we want our output vector to be a probability distribution over a set of
mutually exclusive labels. For example, let’s say we want to build a neural network to
recognize handwritten digits from the MNIST dataset. Each label (0 through 9) is
mutually exclusive, but it’s unlikely that we will be able to recognize digits with 100%
confidence. Using a probability distribution gives us a better idea of how confident
we are in our predictions. As a result, the desired output vector is of the form below,
where ∑i = 0

9 pi = 1:

 p0 p1 p2 p3 . . . p9

This is achieved by using a special output layer called a softmax layer. Unlike in other
kinds of layers, the output of a neuron in a softmax layer depends on the outputs of
all the other neurons in its layer. This is because we require the sum of all the outputs
to be equal to 1. Letting zi be the logit of the ith softmax neuron, we can achieve this
normalization by setting its output to:

 yi = e
zi

∑ j e
z j

A strong prediction would have a single entry in the vector close to 1, while the
remaining entries were close to 0. A weak prediction would have multiple possible
labels that are more or less equally likely.

Looking Forward
In this chapter, we’ve built a basic intuition for machine learning and neural net‐
works. We’ve talked about the basic structure of a neuron, how feed-forward neural
networks work, and the importance of nonlinearity in tackling complex learning
problems. In the next chapter, we will begin to build the mathematical background
necessary to train a neural network to solve problems. Specifically, we will talk about
finding optimal parameter vectors, best practices while training neural networks, and
major challenges. In future chapters, we will take these foundational ideas to build
more specialized neural architectures.

Softmax Output Layers | 15

	Copyright
	Table of Contents
	Preface
	Prerequisites and Objectives
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgements

	Chapter 1. The Neural Network
	Building Intelligent Machines
	The Limits of Traditional Computer Programs
	The Mechanics of Machine Learning
	The Neuron
	Expressing Linear Perceptrons as Neurons
	Feed-Forward Neural Networks
	Linear Neurons and Their Limitations
	Sigmoid, Tanh, and ReLU Neurons
	Softmax Output Layers
	Looking Forward

