## With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

No credit card required

# R CODE FOR ADAPTIVE TESTS WITH BLOCKING FACTORS

Note: The functions teststats, rootcdf, cdfhat, and trad.ftest must also be included. These are in Appendix A and on the file adapt.r.

```adaptblock <- function(dataset,complete,reduced,r,seed,
nblocks) {
print(testdata)
attach(testdata)
statsu <- teststats(y,complete, reduced)
lambdau <- statsu[l]
e <- 0
countperm <- 0
redu <- lm(as.formula(reduced))
yhat <- predict(redu)
yresidual <- residuals(redu)
set.seed(seed)```
`n <- length(yresidual) for (k in 1:r) { for (b in 1:nblocks[1]) { permres <- yresidual[block==b] lengthperm <- length(permres) if ( (lengthperm>1) )permres <- sample(permres) countperm[1] <- 0 for (i in 1:n) { if( (block[i]==b) ) { countperm[1] <- countperm[1] + 1 yresidual[i] <- permres[countperm[1]] } } } ynew <- yhat + yresidual statsp <- teststats(ynew,complete,reduced) lambdap <- statsp[1] if( (lambdap <= lambdau) ) e <- e + 1 } p <- (e+l)/(r+l) detach(testdata) cat(“\n ”,“ ***************************************”,“\n”,“\n ”) cat(“ Input:”,“\n”,“\n”) cat(“ Data set:”,dataset,“\n”,“\n”) cat(“ Complete model: ”, complete, “\n”,“\n”) cat(“ Reduced model : ”, reduced, “\n”,“\n”) cat(“ Number of permutations = ”,r,“\n”,“\n”) cat(“ Random seed = ”, seed, “\n”,“\n”,“\n”, “\n”) cat(“ Output:”,“\n”,“\n”) cat(“ Unpermuted lambda = ”, round (lambdau, 4), “\n”,“\n”) cat(“ Adaptive p-value = ”, round (p, 4), “\n”,“\n”) cat(“ Traditional ...`

## With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

No credit card required