Bibliography

  1. [AAR 51] VAN AARDENNE-EHRENFEST T., DE BRUIJN N.G., “Circuits and trees in oriented linear graphs”, Simon Stevin, vol. 28, pp. 203–217.
  2. [ABE 14] ABEL G.J., SANDER N., “Quantifying global international migration flows”, Science, vol. 343, no. 6178, pp. 1520–1522, 2014.
  3. [ADL 77] ADLER R.L., GOODWYN L.W., WEISS B., “Equivalence of topological Markov shifts”, Israel J. Math., vol. 27, no. 1, pp. 48–63, 1977.
  4. [AGA 09] AGARWAL U., SINGH U.P., Graph Theory, University Science Press, New Delhi, 2009.
  5. [AGR 04] AGRAWAL M., KAYAL N., SAXENA N., “PRIMES is in P”, Ann. of Math. (2), vol. 160, no. 2, pp. 781–793, 2004.
  6. [AHO 95] AHO A.V., DAHBURA A.T., LEE D. et al., Conformance testing Methodologies and Architectures for OSI Protocols, “An optimization technique for protocol conformance test generation based on UIO sequences and rural chinese postman tours”, IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 427–438, 1995.
  7. [ALL 99] ALLOUCHE, J-P., SHALLIT J., “The ubiquitous Prouhet-Thue-Morse sequence. Sequences and their applications (Singapore, 1998)”, Ser. Discrete Math. Theor. Comput. Sci., Springer, London, pp. 1–16, 1999.
  8. [ALL 03] ALLOUCHE J.-P., SHALLIT J., Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, Cambridge, 2003.
  9. [APP 77a] APPEL K., HAKEN W., “Every planar map is four colorable. I. Discharging”, Illinois J. Math. vol. 21, no. 3, pp. 429–490, 1977.
  10. [APP 77b] APPEL K., HAKEN W., KOCH J., “Every planar map is four colorable. ...

Get Advanced Graph Theory and Combinatorics now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.