1Introduction: Generalized Model of Advanced Wireless Networks

In the process of evolving towards 5G networks, wireless networks are becoming more complex in both, the number of different functionalities they provide as well as in the number of users they serve [1]. Future 5G networks are expected to be highly heterogeneous (see Chapter 11) and to integrate cognitive network concepts [2, 3] (Chapter 9), heterogeneous solutions for the offload of cellular network traffic to WLANs [4, 5], multi-hop cellular networks (Chapter 8) including combinations of ad hoc (Chapter 4) and cellular networks [6, 7], and mobile to mobile (m2m) communications [8]. In order to analyze and control these networks, evolving towards complex networks structures, efficient modeling tools are needed.

Complex network theory (Chapter 14) has emerged in recent years as a powerful tool for modeling large topologies observed in current networks [9]. For instance, the World Wide Web behaves like a power-law node degree distributed network, wireless sensor networks like lattice networks, and relations between social acquaintances like small world networks. The concept of small world networks was first introduced by Watts and Strogatz [10] where a small world network is constructed via rewiring a few links in an existing regular network (such as a ring lattice graph). Later on, Newman-Watt [11] suggested a small world network constructed by adding a few new links (shortcuts) without rewiring existing links. The ...

Get Advanced Wireless Networks, 3rd Edition now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.