1. Afifi, A. and Elashoff, R. (1966) Missing observations in multivariate statistics I: review of the literature. Journal of the American Statistical Association, 61:595–604.
  2. Albert, J. H. and Chib, S. (1993) Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88:669–679.
  3. Allison, P. D. (2001) Missing Data, Sage, Thousand Oaks, CA.
  4. Andersen, P. K. and Gill, R. D. (1982) Cox's regression model for counting processes: a large-sample study. Annals of Statistics, 10:1100–1120.
  5. Andersen, P. K., Borgan, O., Gill, R. D., and Keiding, N. (1993) Statistical Models Based on Counting Processes, Springer.
  6. Andrige, R. R. and Little, R. J. A. (2010) A review of hot deck imputation for survey non-response. International Statistical Review, 78:40–64.
  7. Angrist, J. D., Imbens, G. W., and Rubin, D.R. (1996) Identification of causal effects using instrumental variables. Journal of the American Statistical Association, 91: 444–455.
  8. Bahadur, R. R. (1961) A representation of the joint distribution of responses to n dichotomous items. In: H. Solomon, editor, Studies in Item Analysis and Prediction: Stanford Mathematical Studies in the Social Sciences VI, Stanford University Press, Stanford, CA, pp. 158–168.
  9. Barnard, J. and Rubin, D. B. (1999) Small sample degrees of freedom with multiple imputation. Biometrika, 86:948–955.
  10. Basso, O., Pennell, M. L., Chen, A., and Longnecker, M. P. (2010) Mother's age at menarche and offspring size. ...

Get Applied Missing Data Analysis in the Health Sciences now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.