Chapter OneThe Seven Types of Data Pitfalls
“You need to give yourself permission to be human.”
—Joyce Brothers
Data pitfalls. Anyone who has worked with data has fallen into them many, many times. I certainly have. It's as if we've used data to pave the way for a better future, but the road we've made is filled with craters we just don't seem to notice until we're at the bottom looking up. Sometimes we fall into them and don't even know it. Finding out about it much later can be quite humbling.
If you've worked with data before, you know the feeling. You're giving an important presentation, your data is insightful beyond belief, your charts and graphs are impeccable and Tufte-compliant, the build to your grand conclusion is unassailable and awe-inspiring. And then that one guy in the back of the room – the guy with folded arms and furrowed brow – waits until the very end to ask you if you're aware that the database you're working with is fundamentally flawed, pulling the rug right out from underneath you, and plunging you to the bottom of yet another data pitfall. It's enough to make a poor data geek sweat bullets.
The nature of data pitfalls is that we have a particular blindness to them. It makes sense if you think about it. The human race hasn't needed to work with billions of records of data in the form of zeros and ones until the second half of the last century. Just a couple of decades later, though, our era is characterized by an ever-increasing abundance of data and ...
Get Avoiding Data Pitfalls now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.