O'Reilly logo

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Avoiding the Pitfalls of Deep Learning: Solving Model Overfitting with Regularization and Dropout

Video Description

Sponsored by Amazon.

Understanding how to create a deep learning neural network is an essential component of any data scientist's knowledge base. This course covers some of the challenges that arise when training neural networks. It focuses on the problem of overfitting and its potential remedy: regularization. Learners should have a basic understanding of linear algebra and calculus.

  • Discover what overfitting means and how to recognize it in deep learning models
  • Understand how to sample your data to reduce the likelihood of overfitting
  • Learn about regularization and its use as a remedy for overfitting

Laura Graesser is assisting in NVIDIA's autonomous driving project. Previously with The Boston Consulting Group, Laura is a graduate student at New York University, where she's working toward a master’s degree in computer science and machine learning. Laura's interests include neural networks and their application to computer vision problems, and the cross-fertilization between computer vision and natural language processing.