Exercises

  1. Check the following definition of a probabilistic model. Identify the likelihood, the prior, and the posterior:
  1. For the model in exercise 1, how many parameters have the posterior? In other words, how many dimensions does it have?
  2. Write down Bayes' theorem for the model in exercise 1.
  1. Check the following model. Identify the linear model and identify the likelihood. How many parameters does the posterior have?
  1. For the model in exercise 1, assume that you have a dataset with 57 data points coming from a Gaussian with a mean of ...

Get Bayesian Analysis with Python - Second Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.