References

1. Riple BD. Stochastic Simulation. Wiley; 1987.

2. Online at: http://en.wikipedia.org/wiki/Inverse_transform_sampling.

3. Ristic B, Arulampalam S, Gordon N. Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House; 2004.

4. Andrieu C, Douct A, Holstein R. Particle Markov chain Monte Carlo methods. J. R. Stat. Soc. B. 2010;72(3):269–324.

5. Cappé O, Godsill SJ, Moulines E. An overview of existing methods and recent advances in sequential Monte Carlo. Proc. IEEE 2007;95(5):899–924.

6. Liu JS, Chen R. Sequential Monte Carlo methods for dynamic systems. J. Am. Stat. Assoc. 1998;93(443):1032–1044.

7. Chen Z. Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond. Adaptive Systems Laboratory, McMaster University, Hamilton, ON, Canada. [Online], http://citeseerx.ist.psu.edu, 2003.

8. Fearnhead P. Sequential Monte Carlo Methods in Filter Theory, Dissertation. Oxford UK: University of Oxford, MertonCollege; 1998.

9. Ross SM. Introduction to Probability Models, 4 th ed. Academic Press; 1989.

10. Hol DH, Schön TB, Gustafsson F. On resampling algorithms for particle filters. In Proceedings of Nonlinear Statistical Signal Processing Workshop, Cambridge, UK; September 2006.

11. Kong A, Liu JS, Wong WH. Sequential computations and Bayesian missing data problems. J. Am. Stat. Assoc. 1994;89(425):278–288.

12. Gordon N, Salmond D, Smith AF. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F. Radar Signal Process. ...

Get Bayesian Estimation and Tracking: A Practical Guide now with the O’Reilly learning platform.

O’Reilly members experience live online training, plus books, videos, and digital content from nearly 200 publishers.