O'Reilly logo

Coding All-in-One For Dummies by Nikhil Abraham

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Chapter 1

Starting with Simple Learners

IN THIS CHAPTER

check Partitioning recursively training data by decision trees

check Discovering the rules behind playing tennis and surviving the Titanic

check Leveraging Bayesian probability to analyze textual data

“We learn from failure, not from success.”

— DRACULA

Beginning with this chapter, the examples start illustrating the basics of how to learn from data. The plan is to touch some of the simplest learning strategies first — providing some formulas (just those that are essential), intuitions about their functioning, and examples in R and Python for experimenting with some of their most typical characteristics. The chapter begins by reviewing the use of the perceptron to separate classes.

At the root of all principal machine learning techniques presented in the book, there is always an algorithm based on somewhat interrelated linear combinations, variations of the sample splitting of decision trees, or some kind of Bayesian probabilistic reasoning. This chapter uses classification trees to demonstrate the technique. The only exception is the k-Nearest Neighbors (kNN) algorithm, which, based on analogical reasoning, is treated apart in a special chapter ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required