# Practice Test B

Find the standard form of the equation of the parabola with focus $(-10,\text{}0)$ and directrix $x=10.$

${y}^{2}=-10x$

${y}^{2}=-40x$

${x}^{2}=-40y$

${y}^{2}=40x$

Convert the equation ${y}^{2}-4y-5x+24=0$ to the standard form for a parabola by completing the square.

${(y+2)}^{2}=5(x-4)$

${(y-2)}^{2}=5(x-4)$

${(y+2)}^{2}=-5(x-4)$

${(y-2)}^{2}=5(x+4)$

Find the focus and directrix of the parabola with equation $x=7{y}^{2}.$

focus: $({\displaystyle \frac{1}{28}},\text{}0);$ directrix: $x=-{\displaystyle \frac{1}{28}}$

focus: $(0,{\displaystyle \frac{1}{28}});$ directrix: $y=-{\displaystyle \frac{1}{28}}$

focus: $({\displaystyle \frac{1}{28}},\text{}0);$ directrix: $x={\displaystyle \frac{1}{28}}$

focus: $({\displaystyle \frac{1}{7}},\text{}0)$ directrix: $x=-{\displaystyle \frac{1}{7}}$

Graph the parabola with equation ${y}^{2}=-7x.$

Find the vertex, focus, and directrix of the parabola with equation ${(x-3)}^{2}=12(y-1).$

vertex: (3, 1); focus: ...

Get *College Algebra, 4th Edition* now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.