7. Test Set Analysis, Financial Insights, and Delivery to the Client
Overview
This chapter presents several techniques for analyzing a model test set for deriving insights into likely model performance in the future. These techniques include the same model performance metrics we've already calculated, such as the ROC AUC, as well as new kinds of visualizations, such as the sloping of default risk by bins of predicted probability and the calibration of predicted probability. After reading this chapter, you will be able to bridge the gap between the theoretical metrics of machine learning and the financial metrics of the business world. You will be able to identify key insights while estimating the financial impact of a model and provide ...
Get Data Science Projects with Python - Second Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.