O'Reilly logo

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Deep Learning Projects with PyTorch

Video Description

Step into the world of PyTorch to create deep learning models with the help of real-world examples

About This Video

  • Learn to use PyTorch Open Source Deep Learning framework
  • Dive into specific Deep Learning concepts using real-world projects
  • Build and train neural networks to make them more efficient

In Detail

PyTorch is a Deep Learning framework that is a boon for researchers and data scientists. It supports Graphic Processing Units and is a platform that provides maximum flexibility and speed. With PyTorch, you can dynamically build neural networks and easily perform advanced Artificial Intelligence tasks.

The course starts with the fundamentals of PyTorch and how to use basic commands. Next, you’ll learn about Convolutional Neural Networks (CNN) through an example of image recognition, where you’ll look into images from a machine perspective.

The next project shows you how to predict character sequence using Recurrent Neural Networks (RNN) and Long Short Term Memory Network (LSTM). Then you’ll learn to work with autoencoders to detect credit card fraud. After that, it’s time to develop a system using Boltzmann Machines, where you’ll recommend whether to watch a movie or not.

We’ll continue with Boltzmann Machines, where you’ll learn to give movie ratings using AutoEncoders. In the end, you’ll get to develop and train a model to recognize a picture or an object from a given image using Deep Learning, where we’ll not only detect the shape, but also the color of the object.

By the end of the course, you’ll be able to start using PyTorch to build Deep Learning models by implementing practical projects in the real world. So, grab this course as it will take you through interesting real-world projects to train your first neural nets.