10 Combining data sources into a unified dataset

This chapter covers

  • Loading and processing raw data files
  • Implementing a Python class to represent our data
  • Converting our data into a format usable by PyTorch
  • Visualizing the training and validation data

Now that we’ve discussed the high-level goals for part 2, as well as outlined how the data will flow through our system, let’s get into specifics of what we’re going to do in this chapter. It’s time to implement basic data-loading and data-processing routines for our raw data. Basically, every significant project you work on will need something analogous to what we cover here.1 Figure 10.1 shows the high-level map of our project from chapter 9. We’ll focus on step 1, data loading, for the ...

Get Deep Learning with PyTorch now with the O’Reilly learning platform.

O’Reilly members experience live online training, plus books, videos, and digital content from nearly 200 publishers.