
626 r N A p't"
E R 11
CORDIC Algorithm and Implementations
11.5.3
Unified Description
From the previous development it is possible to describe the algorithm in the
three coordinate systems in a unified manner by defining the parameter m so that
9 m = 1 for circular coordinates
9 m = -1 for hyperbolic coordinates
9 m
-- 0 for linear coordinates
In that case, the unified microrotation is ll
x[j + 11 = x[i]-mcrj2-Jy[j]
yD + 1] - y[j] + aj2-Jx[j]
z[j]-crj tan-l(2 -j) if m -- 1
z[j+l]-- z[j]-crjtanh-](2 -j) if m---1
z[/'] - aj(2-J) if
m -- 0
and the scaling factor is
Kin[j]
-- ( 1 + m2 -2j) 1/2
Table