Digital Image Processing with Application to Digital Cinema

Book description

With crystal clarity, this book conveys the most current principles in digital image processing, providing both the background theory and the practical applications to various industries, such as digital cinema, video compression, and streaming media.

Table of contents

  1. Cover
  2. Halftitle
  3. Title
  4. Copyright
  5. Dedication
  6. Contents
  7. Foreword
  8. Preface
  9. Acknowledgments
  10. 1 Introduction
    1. 1.1 Background
    2. 1.2 Enhancement
    3. 1.3 Compression
    4. 1.4 Restoration
    5. 1.5 Computed Tomography
    6. 1.6 Image Analysis
    7. 1.7 Summary
    8. References
  11. 2 Two-Dimensional Signals, Systems, and Discrete Fourier Transform
    1. 2.1 Two-Dimensional Discrete Signals
    2. 2.2 Two-Dimensional Discrete Systems
      1. 2.2.1 Linear Systems
      2. 2.2.2 Space Invarient Systems
      3. 2.2.3 System Response via 2-D Convolution
      4. 2.2.4 Causal and Stable Systems
    3. 2.3 Two-Dimensional Discrete Fourier Transform
    4. 2.4 Frequency Response
    5. 2.5 Two-Dimensional Filtering
    6. 2.6 FIR Filter Design
      1. 2.6.1 Separable FIR Filters
        1. 2.6.1.1 Window-Based Methods
        2. 2.6.1.2 Frequency Sampling Technique
        3. 2.6.1.3 Optimal Design Techniques
      2. 2.6.2 Nonseparable FIR Filters
    7. 2.7 Summary
    8. References
  12. 3 Human Visual Perception
    1. 3.1 Introduction
    2. 3.2 Brightness Perception
      1. 3.2.1 Intensity, Luminance, and Brightness
      2. 3.2.2 Simultaneous Contrast
      3. 3.2.3 Mach Bands
      4. 3.2.4 Transfer Function of the HVS
      5. 3.2.5 Monochrome Vision Model
      6. 3.2.6 Visual Masking and an Improved HVS Model
    3. 3.3 Color Perception
      1. 3.3.1 Color-Matching Functions
      2. 3.3.2 Color Coordinate Systems
        1. 3.3.2.1 CIE XYZ Primaries
        2. 3.3.2.2 NTSC Receiver and Transmission Primaries
      3. 3.3.3 HVS Model for Color Vision
      4. 3.3.4 Opponent Color Model
    4. 3.4 Summary
    5. References
  13. 4 Image Acquisition
    1. 4.1 Introduction
    2. 4.2 Image Sensors
      1. 4.2.1 CCD Sensors
        1. 4.2.1.1 Full-Frame Architecture
        2. 4.2.1.2 Interline Architecture
        3. 4.2.1.3 Frame-Transfer CCD
    3. 4.2.2 CMOS Sensors
    4. 4.2.3 Color Sensors
    5. 4.3 Image Sampling
    6. 4.4 Image Quantization
      1. 4.4.1 Uniform Quantization
      2. 4.4.2 Optimal Quantization
    7. 4.5 Image Scanning
      1. 4.5.1 Interlaced and Progressive Scanning
      2. 4.5.2 Color Image Scanning
      3. 4.5.3 Color Encoding in Digital Video
    8. 4.6 Film-to-Digital Conversion
    9. 4.7 Summary
    10. References
  14. 5 Image Inhancement
    1. 5.1 Background
    2. 5.2 Point Processing
      1. 5.2.1 Logarithmic Transformation
      2. 5.2.2 Contrast Stretching
      3. 5.2.3 Histogram Modification
        1. 5.2.3.1 Histogram Equalization
        2. 5.2.3.2 Adaptive Histogram Modification
    3. 5.3 Neighborhood Processing
      1. 5.3.1 Simple Mask Operations
      2. 5.3.2 Two-Dimensional Filters Satisfying Specified Frequency Responses
      3. 5.3.3 Median Filtering
    4. 5.4 Color Image Enhancement
    5. 5.5 Summary
    6. References
  15. 6 Discrete Transforms for Image Processing
    1. 6.1 Introduction
    2. 6.2 Unitary Transforms
      1. 6.2.1 One-Dimensional Unitary Transforms
        1. 6.2.1.1 One-Dimensional DFT
        2. 6.2.1.2 One-Dimensional Discrete Cosine Transform (DCT)
        3. 6.2.1.3 One-Dimensional Discrete Sine Transform (DST)
        4. 6.2.1.4 One-Dimensional Discrete Hartley Transform
        5. 6.2.1.5 Hadamard, Haar, and Slant Transforms
      2. 6.2.2 Two-Dimensional Discrete Transforms
      3. 6.2.3 Some Properties of Unitary Transform
    3. 6.3 Karhunen-Loeve Transform
    4. 6.4 Choice of a Transform
    5. 6.5 Summary
    6. References
  16. 7 Wavelet Transform
    1. 7.1 Introduction
    2. 7.2 Continuous Wavelet Transform
    3. 7.3 The Wavelet Series
    4. 7.4 Discrete Wavelet Transform
    5. 7.5 Implementation of the Discrete Wavelet Transform
    6. 7.6 Relationship of Scaling and Wavelet Filters to Wavelets
      1. 7.6.1 Orthogonal Discrete Wavelet Transform
      2. 7.6.2 Biorthogonal Discrete Wavelet Transform
      3. 7.6.3 Construction of Wavelets
    7. 7.7 Two-Dimensional Discrete Wavelet Transform
    8. 7.8 Summary
    9. References
  17. 8 Image Compression
    1. 8.1 Introduction
      1. 8.1.1 Image Fidelity Criterion
        1. 8.1.1.1 Quantitative Measures
        2. 8.1.1.2 Subjective Measures
    2. 8.2 Lossless Compression
      1. 8.2.1 Elements of Information Theory
      2. 8.2.2 Huffman Coding
      3. 8.2.3 Run-Length Coding
      4. 8.2.4 Arithmetic Coding
      5. 8.2.5 Golomb–Rice (GR) Coding
    3. 8.3 Predictive Coding
      1. 8.3.1 One-Dimensional DPCM
      2. 8.3.2 Adaptive DPCM
      3. 8.3.3 Two-Dimensional DPCM
    4. 8.4 Transform Coding
      1. 8.4.1 Choice of a Transform
      2. 8.4.2 Optimal Bit Allocation
      3. 8.4.3 Quantizer Design
      4. 8.4.4 Entropy Coder
      5. 8.4.5 Variable Block Size DCT Coder
    5. 8.5 Compression in the Wavelet Domain
      1. 8.5.1 Choice of Wavelets
      2. 8.5.2 Quantization
      3. 8.5.3 Zero-Tree Wavelet Coding
      4. 8.5.4 JPEG2000 Standard
    6. 8.6 Video Coding Principles
      1. 8.6.1 Temporal Prediction in the Pixel Domain
        1. 8.6.1.1 Motion Estimation
      2. 8.6.2 Wavelet-Based Interframe Coding
      3. 8.6.3 Interframe Coding Using Three-Dimensional DCT
        1. 8.6.3.1 Temporal Depth
        2. 8.6.3.2 Three-Dimensional DCT
        3. 8.6.3.3 Quantization
        4. 8.6.3.4 Zigzag Scanning
        5. 8.6.3.5 Entropy Coding
      4. 8.6.4 Role of Human Visual Perception in Image and Video Coding
        1. 8.6.4.1 Quantization Matrix for DCT Domain Coding
        2. 8.6.4.2 Quantization Matrix for Wavelet Domain Coding
        3. 8.6.4.3 Use of Spatial and Temporal Masking Models
      5. 8.6.5 MPEG Standard
    7. 8.7 Summary
    8. References
  18. 9 Application of Image Compression to Digital Cinema
    1. 9.1 Introduction
    2. 9.2 Digital Cinema Technology Requirements
      1. 9.2.1 Image Resolution and Format
      2. 9.2.2 Digital Projector
      3. 9.2.3 Image Compression System
    3. 9.3 Case Study
      1. 9.3.1 QUALCOMM’s Digital Cinema System
        1. 9.3.1.1 Adaptive Block-Size DCT Encoder
        2. 9.3.1.2 ABSDCT Decoder
        3. 9.3.1.3 QUALCOMM’s Decoder ASIC
      2. 9.3.2 Digital Cinema Using Motion JPEG2000 Standard
        1. 9.3.2.1 MJ2K Image Resolution and Format
        2. 9.3.2.2 Compression in the Wavelet Domain
        3. 9.3.2.3 MJ2K File Format
        4. 9.3.2.4 Error Resilience
    4. 9.4 Concluding Remarks
    5. References
  19. Appendices
    1. A Continuous and Discrete Fourier Transforms
      1. A.1 Continuous Fourier Transform
        1. A.1.1 Properties of Continuous Fourier Transform
      2. A.2 Discrete Fourier Transform
    2. B Radiometric and Photometric Quantities
      1. B.1 Radiometric Quantities
        1. B.1.1 Radiant Energy
        2. B.1.2 Radiant Flux
        3. B.1.3 Radiant Exitance
        4. B.1.4 Irradiance
        5. B.1.5 Radiant Intensity
        6. B.1.6 Radiance
      2. B.2 Photometric Quantities
        1. B.2.1 Luminous Flux
        2. B.2.2 Lumens
        3. B.2.3 Luminous Intensity
        4. B.2.4 Luminance
        5. B.2.5 Illumanation
    3. C MATLAB M Files for Selected Chapters
      1. C.1 M Files from Chapter 2
      2. C.2 M Files from Chapter 3
      3. C.3 M Files from Chapter 4
      4. C.4 M Files from Chapter 5
      5. C.5 M Files from Chapter 6
      6. C.6 M Files from Chapter 7
      7. C.7 M Files from Chapter 8
    4. D Suggested MATLAB-Oriented Projects
      1. D.1 Projects in Chapter 2
        1. D.1.1 Effect of Filtering an Image
        2. D.1.2 Nonlinear Filtering
        3. D.1.3 Phase Distortion
      2. D.2 Projects in Chapter 3
        1. D.2.1 Contrast Sensitivity
        2. D.2.2 Spatial Masking Effect
        3. D.2.3 Color Sensitivity
      3. D.3 Projects in Chapter 5
        1. D.3.1 Adaptive Histogram Equalization
        2. D.3.2 Noise Cleaning
        3. D.3.3 Color Image Enhancement
      4. D.4 Projects in Chapter 8
        1. D.4.1 DPCM
        2. D.4.2 DPCM Using GR Coding
        3. D.4.3 Transform Coder
        4. D.4.4 Transform Coder for Color Images
        5. D.4.5 Encoder Using Discrete Wavelet Transform
        6. D.4.6 DWT Encoder for Color Image Compression
        7. D.4.7 Motion Estimation
  20. Index

Product information

  • Title: Digital Image Processing with Application to Digital Cinema
  • Author(s): KS Thyagarajan
  • Release date: December 2005
  • Publisher(s): Routledge
  • ISBN: 9781136034893