i
i
main”—2013/4/10—15:19—page299—#311
i
i
i
i
i
i
Literaturverzeichnis
[1] M. Aigner und G. M. Ziegler: Das Buch der Beweise. Springer, Berlin, 2009.
[2] W. R. Alford, A. J. Granville und C. B. Pomerance: There are infinitely many Carmichael num-
bers. Ann. of Math. (2), 140:703–722, 1994.
[3] A. Arnold: A syntactic congruence for rational ω-languages. Theoretical Computer Science,
39:333–335, 1 985.
[4] E. Bach und J. Shallit: Algorithmic number theory, volume 1: efficient algorithms. MIT Press,
Cambridge, Massachusetts, 1996.
[5] F. L. Bauer: Entzifferte Geheimnisse: Methoden und Maximen der Kryptologie. Springer, 2000.
[6] M. Benois: Parties rationelles du groupe libre. C. R. Acad. Sci. Paris, Sér. A, 269:1188–1190,
1969.
[7] A. Björner und F. Brenti: Combinatorics of Coxeter groups,Band231vonGraduate Texts in
Mathematics. Springer, New York, 2005.
[8] J. L. Britton: The word problem. Ann. of Math., 77:16–32, 1963.
[9] J. A. Brzozowski: Canonical regular expressions and minimal state graphs for definite events.
In Proc. Sympos. Math. Theory of Automata (New York, 1962), S. 529?–561. 1963.
[10] J. R. Büchi: Weak Second-Order Arithmetic and Finite Automata. Zeitschrift für mathematische
Logik und Grundlagen der Mathematik, 6:66–92, 1960.
[11] J. R. Büchi: On a Decision Method in Restricted Second-Order Arithmetic.InProc. Int. Congr.
for Logic, Methodology, and Philosophy of Science, S. 1–11. Stanford Univ. Press, 1962.
[12] J. Buchmann: Einführung in die Kryptographie. Springer-Lehrbuch. Springer, 2010.
[13] T. Camps, V. große Rebel und G. Rosenberger: Einführung in die kombinatorische und die geo-
metrische Gruppentheorie. Nummer 19 in Berliner Studienreihe zur Mathematik. Heldermann
Verlag, 2008.
[14] K. T. Chen, R. H. Fox und R. C. Lyndon: Free differential calculus, IV The quotient groups of
the lower central series. A nn. of Maths., 68(1):81–95, 1958.
[15] A. Church und J. B. Rosser: Some properties of conversion. T. Am. Math. Soc., 39:472–482,
1936.
[16] R. Crandall und C. B. Pomerance: Prime Numbers: A Computational Perspective.Springer,
2010.
[17] M. W. Davis: The geometry and topology of Coxeter groups,Band32vonLondon Math. Soc.
Monographs Series. Princeton University Press, Princeton, NJ, 2008.
[18] L. E. Dickson: Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct
Prime Factors. American Journal of Mathematics, 35(4):413–422, 1913.
[19] V. Diekert und P. Gastin: P ure future local temporal logics are expressively complete for
Mazurkiewicz traces. Information and Computation, 204:1597–1619 , 2006.
[20] V. Diekert und P. Gastin: First-order definable languages.InLogic and Automata: History and
Perspectives, Texts in Logic and Games, S. 261–306. Amsterdam University Press, 2008.
[21] V. Diekert und M. Kufleitner: Bounded synchronization delay in omega-rational expressions.
In CSR 2012, Proceedings,Band7353vonLecture Notes in Computer Science, S. 89–98.
Springer-Verlag, 2012.
[22] V. Diekert, M. Kufleitner, K. Reinhardt und T. Walter: Regular Languages are Church-Rosser
Congruential.InICALP 2012, Proc. Part II, Band 7392 von Lecture N otes in Computer Science,
S. 177–188. Springer-Verlag, 2012.
[23] V. Diekert, M. Kufleitner und G. Rosenberger: Elemente der Diskreten Mathematik. Walter de
Gruyter, 2013.
[24] V. Diekert, M. Kufleitner und B. Steinberg: The Krohn-Rhodes Theorem and Local Divisors.
Fundamenta Informaticae, 116(1–4):65–77, 2012.

Get Diskrete algebraische Methoden now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.