Displays, 2nd Edition

Book description

In the extensive fields of optics, holography and virtual reality, technology continues to evolve. Displays: Fundamentals and Applications, Second Edition addresses these updates and discusses how real-time computer graphics and vision enable the application and displays of graphical 2D and 3D content.

Perfect for the student looking to sharpen their developing skill or the master refining their technique, Rolf Hainich and Oliver Bimber help the reader understand the basics of optics, light modulation, visual perception, display technologies, and computer-generated holography

Table of contents

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright Page
  5. Dedication
  6. Table of Contents
  7. List of Tables
  8. Foreword to the Second Edition
  9. Foreword to the First Edition
  10. Preface
  11. CHAPTER 1 ■ Introduction
    1. 1.1 DISPLAYS: BIRD’S-EYE VIEW
    2. 1.2 MILESTONES OF DISPLAY TECHNOLOGY
      1. 1.2.1 Early 1400s to Late 1800s: The Optical Era
      2. 1.2.2 Late 1800s to Early 1900s: The Electromechanical Era
      3. 1.2.3 Early and mid-1900s: The Electronic Era
      4. 1.2.4 Late 1900s to Early 2000s: The Digital Era
      5. 1.2.5 The Fascination of Three Dimensions
    3. 1.3 ORGANIZATION OF THE BOOK
  12. CHAPTER 2 ■ Fundamentals of Light
    1. 2.1 INTRODUCTION
    2. 2.2 ELECTROMAGNETIC RADIATION
    3. 2.3 PRINCIPLES OF LIGHT GENERATION
      1. 2.3.1 Thermal Radiation
        1. 2.3.1.1 Radiation, Absorption and Efficiency
      2. 2.3.2 Applications of Thermal Radiation Laws
      3. 2.3.3 Open Systems and the Greenhouse Effect
      4. 2.3.4 Color Temperature
      5. 2.3.5 Bremsstrahlung
      6. 2.3.6 Photon Energies
      7. 2.3.7 Electron Excitation
      8. 2.3.8 Gas Discharge
        1. 2.3.8.1 Neon Lamps
        2. 2.3.8.2 Plasma Lamps
        3. 2.3.8.3 Arc Lamps
        4. 2.3.8.4 Phosphors
        5. 2.3.8.5 Fluorescent Lamps
        6. 2.3.8.6 Other Forms of Luminescence
      9. 2.3.9 Electroluminescence
        1. 2.3.9.1 LED
        2. 2.3.9.2 OLED
        3. 2.3.9.3 Laser
    4. 2.4 MEASURING LIGHT
      1. 2.4.1 Radiometry
        1. 2.4.1.1 Angular Range
        2. 2.4.1.2 Lambert Emitters
        3. 2.4.1.3 Solid Angle and Angular Density
        4. 2.4.1.4 The Ulbricht Sphere
      2. 2.4.2 Photometry
      3. 2.4.3 Luminous Efficiency of Light Sources
      4. 2.4.4 Durability of Light Sources
    5. 2.5 PHYSICS OF LIGHT
      1. 2.5.1 Interference
      2. 2.5.2 Quantum Effects
        1. 2.5.2.1 The Double-Slit Experiment
        2. 2.5.2.2 The Schrödinger Equation
        3. 2.5.2.3 Interpretation
        4. 2.5.2.4 The Uncertainty Principle
      3. 2.5.3 Fourier Spectrum
      4. 2.5.4 Radiation Processes Revisited
      5. 2.5.5 Tunneling
      6. 2.5.6 Quantum Dots
      7. 2.5.7 Polarization
        1. 2.5.7.1 Polarizer Filters
        2. 2.5.7.2 Polarization and Quantum Physics
        3. 2.5.7.3 Turning Polarization
      8. 2.5.8 Circular Polarization
        1. 2.5.8.1 Producing Circular Polarized Light
      9. 2.6 SUMMARY
  13. CHAPTER 3 ■ Principles of Optics
    1. 3.1 INTRODUCTION
    2. 3.2 WAVE OPTICS
    3. 3.3 GEOMETRIC OPTICS
      1. 3.3.1 Light Modulation
        1. 3.3.1.1 Scattering
        2. 3.3.1.2 Refraction
      2. 3.3.2 Homogeneous vs. Inhomogeneous Media
      3. 3.3.3 Snell’s Law Vectorized
    4. 3.4 FORMATION OF POINT IMAGES
      1. 3.4.1 Reflective Optics
        1. 3.4.1.1 Planar Mirrors
        2. 3.4.1.2 Spherical Mirrors
        3. 3.4.1.3 Concave Parabolic Mirrors
        4. 3.4.1.4 Convex Parabolic Mirrors
        5. 3.4.1.5 Varifocal Mirrors
      2. 3.4.2 Refractive Optics
        1. 3.4.2.1 Lenses
        2. 3.4.2.2 Converging Lenses
        3. 3.4.2.3 Diverging Lenses
        4. 3.4.2.4 Plane Parallel and Curved Parallel Lenses
        5. 3.4.2.5 Varifocal Lenses
        6. 3.4.2.6 Fresnel Lenses
        7. 3.4.2.7 GRIN Lenses
      3. 3.4.3 Properties of Optical Systems
        1. 3.4.3.1 Apertures
        2. 3.4.3.2 Vignetting
        3. 3.4.3.3 Aberrations
        4. 3.4.3.4 Spherical Aberration
        5. 3.4.3.5 Astigmatism
        6. 3.4.3.6 Resolution
        7. 3.4.3.7 Depth of Field
    5. 3.5 LASERS
      1. 3.5.1 Stimulated Emission
      2. 3.5.2 Laser Beam Divergence
    6. 3.6 THE PLENOPTIC FUNCTION
    7. 3.7 SUMMARY
  14. CHAPTER 4 ■ Basics of Visual Perception
    1. 4.1 INTRODUCTION
    2. 4.2 THE HUMAN VISUAL SYSTEM
      1. 4.2.1 The Eye as an Optical System
      2. 4.2.2 Saccades
      3. 4.2.3 Temporal Response
      4. 4.2.4 Contrast and Dynamic Range
      5. 4.2.5 Resolution
    3. 4.3 COLORIMETRY
      1. 4.3.1 CIE Color-Matching Functions
      2. 4.3.2 The CIE Chromaticity Diagram
      3. 4.3.3 Color Separation of the Eye
      4. 4.3.4 Color Recording
      5. 4.3.5 Neuro-Physiological Results
        1. 4.3.5.1 Retinal Image Processing
    4. 4.4 DEPTH PERCEPTION
      1. 4.4.1 The Human Visual Field
      2. 4.4.2 Depth Cues
        1. 4.4.2.1 Convergence
        2. 4.4.2.2 Retinal Disparity
        3. 4.4.2.3 Accommodation
        4. 4.4.2.4 Focus Effects
        5. 4.4.2.5 Haze
        6. 4.4.2.6 Color
        7. 4.4.2.7 Motion Parallax and Motion Dynamics
      3. 4.4.3 Stereo Picture Recording
    5. 4.5 MOTION PICTURES
      1. 4.5.1 Displays and Motion Blur
      2. 4.5.2 Film Projection
    6. 4.6 SUMMARY
  15. CHAPTER 5 ■ Holographic Principles
    1. 5.1 INTRODUCTION
    2. 5.2 HOLOGRAPHY: A SUMMARY
      1. 5.2.1 Holographic Object Recognition
      2. 5.2.2 A Basic Hologram Setup
    3. 5.3 INTERFERENCE AND DIFFRACTION
      1. 5.3.1 The Grating Equation
      2. 5.3.2 Holographic Point Formation in Detail
      3. 5.3.3 Phase Holograms
      4. 5.3.4 Embossed Holograms
      5. 5.3.5 Color Dispersion
      6. 5.3.6 Volume Gratings
        1. 5.3.6.1 Volume Grating Construction
        2. 5.3.6.2 Volume Grating Reconstruction
        3. 5.3.6.3 Resolution Requirements
        4. 5.3.6.4 Bragg’s Law
        5. 5.3.6.5 Color Dependency
        6. 5.3.6.6 Point Formation in a White-Light Hologram
      7. 5.3.7 Hologram Efficiency
      8. 5.3.8 Holograms and Displays – Basic Considerations
      9. 5.3.9 Temporal Coherence
      10. 5.3.10 Spatial Coherence
      11. 5.3.11 Laser Speckle
    4. 5.4 HOLOGRAPHIC OPTICAL ELEMENTS (HOE)
      1. 5.4.1 Head-Up Displays
      2. 5.4.2 Construction of a HOE
        1. 5.4.2.1 A Detailed Construction Setup
      3. 5.4.3 HOE Angular and Frequency Response
      4. 5.4.4 HOEs vs. Conventional Optics
      5. 5.4.5 Camera Lenses with HOEs
      6. 5.4.6 Virtual HOEs
      7. 5.4.7 Spatial Light Modulators
      8. 5.4.8 Beam Splitters and Diverters
        1. 5.4.8.1 Switched HOEs
      9. 5.4.9 Holographic Projection Screens
      10. 5.4.10 Visual Perception of Holograms
      11. 5.4.11 Keyhole Holograms
    5. 5.5 OPTICAL HOLOGRAPHY
      1. 5.5.1 Optical Distortion
      2. 5.5.2 Transmission Holograms
      3. 5.5.3 Reflection Holograms
      4. 5.5.4 Rainbow Holograms
      5. 5.5.5 Color Holograms
      6. 5.5.6 Multichannel Holograms
      7. 5.5.7 Holographic Stereograms
      8. 5.5.8 Digital Volumetric Holograms
    6. 5.6 SUMMARY
  16. CHAPTER 6 ■ Display Basics
    1. 6.1 INTRODUCTION
    2. 6.2 FUNDAMENTAL MEASURES
      1. 6.2.1 Resolution
        1. 6.2.1.1 Digital vs. Film
      2. 6.2.2 Interlacing
      3. 6.2.3 TV Standards
        1. 6.2.3.1 The Kell Factor
        2. 6.2.3.2 Eye Resolution and Displays
      4. 6.2.4 Display Resolution and Motion
      5. 6.2.5 Brightness
      6. 6.2.6 Contrast and Dynamic Range
      7. 6.2.7 Gamma
      8. 6.2.8 Geometry
      9. 6.2.9 Angular Range
        1. 6.2.9.1 Viewing Cone
      10. 6.2.10 Speed
    3. 6.3 COLOR AND INTENSITY PRODUCTION
      1. 6.3.1 Color Gamut
      2. 6.3.2 Wide-Color-Gamut Displays
      3. 6.3.3 Multicolor Displays
      4. 6.3.4 Additive and Subtractive Color Mixing
        1. 6.3.4.1 Subtractive Color Mixing
      5. 6.3.5 YUV-Formats
      6. 6.3.6 Dyes and Filters
      7. 6.3.7 Light Sources
      8. 6.3.8 Luminescent vs. Light Valve Displays
      9. 6.3.9 Test Pictures
    4. 6.4 SIGNAL AND IMAGE PROCESSING
      1. 6.4.1 Signal Transmission
      2. 6.4.2 The Sampling Theorem
        1. 6.4.2.1 Dirac Pulse Series
        2. 6.4.2.2 Pulses and Sampling
        3. 6.4.2.3 Fourier Transform of the Dirac Series
        4. 6.4.2.4 Back to Analog
      3. 6.4.3 Tonal Resolution, Signal Noise, and Transfer Function
      4. 6.4.4 Antialiasing
      5. 6.4.5 Moiré
      6. 6.4.6 Resizing
      7. 6.4.7 Noise Reduction
      8. 6.4.8 Image Compression
      9. 6.4.9 Deinterlacing
    5. 6.5 ELECTRONICS
      1. 6.5.1 Semiconductors
      2. 6.5.2 Passive Matrix Displays
      3. 6.5.3 Multiplexing and Connection
      4. 6.5.4 Active Matrix Displays
      5. 6.5.5 Smart Displays
    6. 6.6 ASSEMBLY
      1. 6.6.1 Panel Construction
      2. 6.6.2 Backlighting
      3. 6.6.3 Antireflective Coatings
        1. 6.6.3.1 Sol-Gel Coating
      4. 6.6.4 Touch Screens
        1. 6.6.4.1 Force Sensors
        2. 6.6.4.2 Surface Wave Detection
        3. 6.6.4.3 Light Grid and Optical Imaging
        4. 6.6.4.4 Bidirectional Display Touch Detection
        5. 6.6.4.5 Resistive Panels
        6. 6.6.4.6 Percolation
        7. 6.6.4.7 Quantum Tunneling Composite (QTC)
        8. 6.6.4.8 Surface Capacitance
        9. 6.6.4.9 Projected Capacitance (PCT)
        10. 6.6.4.10 Inductive Touch Panels
        11. 6.6.4.11 Touch Panels with Tactile Feedback
      5. 6.6.5 Flexible Electronics
      6. 6.6.6 Transparent Electronics
        1. 6.6.6.1 Transparent Semiconductors
        2. 6.6.6.2 Organic Transparent Semiconductors
        3. 6.6.6.3 Carbon Nanotubes
      7. 6.6.7 Printed Displays
    7. 6.7 POWER CONSUMPTION
    8. 6.8 SUMMARY
  17. CHAPTER 7 ■ Spatial Light Modulation
    1. 7.1 INTRODUCTION
    2. 7.2 TRANSMISSIVE DISPLAYS
      1. 7.2.1 LCD
        1. 7.2.1.1 Driving LC Displays
      2. 7.2.2 FLC
      3. 7.2.3 TMOS
      4. 7.2.4 Dyed Guest Host Displays
      5. 7.2.5 Other
    3. 7.3 REFLECTIVE DISPLAYS
      1. 7.3.1 LCoS
        1. 7.3.1.1 F-LCoS
        2. 7.3.1.2 Phase Shifting LCD
      2. 7.3.2 Bi-Stable LC Displays
      3. 7.3.3 DMD
        1. 7.3.3.1 Driving DMDs
      4. 7.3.4 Advanced Driving Techniques
      5. 7.3.5 PISTON-Type Micromirror Displays
      6. 7.3.6 MLM
      7. 7.3.7 GLV
      8. 7.3.8 Polymer Displays
        1. 7.3.8.1 Electrochromic Polymers
      9. 7.3.9 E-Ink
      10. 7.3.10 Electrowetting Displays
      11. 7.3.11 Electrofluidic Displays
      12. 7.3.12 iMOD Displays
      13. 7.3.13 Refractive Index Modulation
      14. 7.3.14 Electronic Paper
    4. 7.4 TRANSFLECTIVE DISPLAYS
    5. 7.5 TRANSPARENT BACKLIGHT DISPLAYS
    6. 7.6 EMISSIVE DISPLAYS
      1. 7.6.1 CRT
        1. 7.6.1.1 Deflection
      2. 7.6.2 FED and SED
      3. 7.6.3 Plasma Displays
        1. 7.6.3.1 ALiS
      4. 7.6.4 Electroluminescence Displays
      5. 7.6.5 LED
      6. 7.6.6 OLED
        1. 7.6.6.1 Transparent OLED
        2. 7.6.6.2 OLED on CMOS
      7. 7.6.7 Vacuum Fluorescence Displays
      8. 7.6.8 Cold Cathode Tubes
    7. 7.7 TILED DISPLAYS
    8. 7.8 HIGH DYNAMIC RANGE DISPLAYS
    9. 7.8.1 Rendering for HDR LCD Displays
    10. 7.9 BIDIRECTIONAL DISPLAYS
    11. 7.10 PROJECTION DISPLAYS
      1. 7.10.1 Projector Optics Overview
      2. 7.10.2 Projection Lenses
        1. 7.10.2.1 Offset Projection
      3. 7.10.3 Projector Lamps
      4. 7.10.4 CRT and OLED Projectors
      5. 7.10.5 LCD Projectors
      6. 7.10.6 DLP and GLV Projectors
      7. 7.10.7 Eidophor Projector
      8. 7.10.8 Dichroic Combiners
      9. 7.10.9 Fourier Holographic Projector
      10. 7.10.10 Projection Screens
      11. 7.10.11 Rear Projection
      12. 7.10.12 Wedge Displays
      13. 7.10.13 Collimated Displays
      14. 7.10.14 Laser Projectors
        1. 7.10.14.1 Far-Field Laser Projectors
        2. 7.10.14.2 MEMS Scanners
      15. 7.10.15 Beam Deflection Modes
        1. 7.10.15.1 Scanning Fiber Projection
    12. 7.11 SUMMARY
  18. CHAPTER 8 ■ Projector-Camera Systems
    1. 8.1 INTRODUCTION
    2. 8.2 CHALLENGES OF NONOPTIMIZED SURFACES
    3. 8.3 GEOMETRIC REGISTRATION
      1. 8.3.1 Uniformly Colored Surfaces of Known Geometry
      2. 8.3.2 Textured Surfaces and Surfaces of Unknown Geometry
      3. 8.3.3 Embedded Structured Light
    4. 8.4 RADIOMETRIC COMPENSATION
      1. 8.4.1 Static Techniques
      2. 8.4.2 Dynamic Surfaces and Configurations
      3. 8.4.3 Dynamic Image Adaptation
      4. 8.4.4 Enhancing Contrast
    5. 8.5 CORRECTING COMPLEX LIGHT MODULATIONS
      1. 8.5.1 Interreflections
      2. 8.5.2 Specular Reflections
      3. 8.5.3 Radiometric Compensation through Inverse Light Transport
    6. 8.6 OVERCOMING TECHNICAL LIMITATIONS
      1. 8.6.1 Increasing Depth of Field
      2. 8.6.2 Super-Resolution
      3. 8.6.3 High Dynamic Range
      4. 8.6.4 High Speed
    7. 8.7 SUMMARY
  19. CHAPTER 9 ■ Three-Dimensional Displays
    1. 9.1 INTRODUCTION
    2. 9.2 THREE-DIMENSIONAL DISPLAYS: BASIC CONSIDERATIONS
      1. 9.2.1 Orientation
      2. 9.2.2 Distance and Depth
      3. 9.2.3 Perspective
      4. 9.2.4 3D: Screen Size Matters
      5. 9.2.5 Toward Light Field Displays
    3. 9.3 SPATIAL STEREOSCOPIC DISPLAYS
      1. 9.3.1 Stereo-Channel Separation
        1. 9.3.1.1 Active Stereo-Channel Separation
        2. 9.3.1.2 Time-Sequential 3D Displays and Motion
        3. 9.3.1.3 Passive Stereo-Channel Separation
        4. 9.3.1.4 Anaglyph and Wavelength Multiplexing Separation
        5. 9.3.1.5 Polarization-Based Separation
        6. 9.3.1.6 Interlaced Polarizer-Based Separation
        7. 9.3.1.7 Other Stereo Separation Techniques
      2. 9.3.2 Projection Screens
      3. 9.3.3 Screen Configurations and Rendering
      4. 9.3.4 Stereoscopic Multiviewer Techniques
    4. 9.4 AUTOSTEREOSCOPIC DISPLAYS
      1. 9.4.1 Parallax Displays
        1. 9.4.1.1 Barrier Displays
        2. 9.4.1.2 Advanced Barrier Patterns
        3. 9.4.1.3 Multiperspective Displays
        4. 9.4.1.4 Multilayer Barrier Displays
        5. 9.4.1.5 Lenticular Displays
        6. 9.4.1.6 Properties of Lenticular Displays
        7. 9.4.1.7 Time-Multiplexed Displays
        8. 9.4.1.8 Multi-Viewer Techniques
        9. 9.4.1.9 Basic Categories
      2. 9.4.2 Volumetric Displays
        1. 9.4.2.1 Swept Volume Displays
        2. 9.4.2.2 Static Volume Displays
    5. 9.5 LIGHT FIELD DISPLAYS
      1. 9.5.1 Parameterization
      2. 9.5.2 Light Fields vs. Holograms
      3. 9.5.3 Light Field Focus Synthesis
      4. 9.5.4 Depth of Field and Light Field Recording
      5. 9.5.5 Light Field Display Implementations
      6. 9.5.6 An Adaptive Approach to Light Field Displays
        1. 9.5.6.1 Diffractive Beam Forming
        2. 9.5.6.2 Electrowetting Prisms and Other Approaches
    6. 9.6 COMPUTER-GENERATED HOLOGRAMS
      1. 9.6.1 Displaying Computed Fringe Patterns
      2. 9.6.2 Computing a Hologram
      3. 9.6.3 Fourier Hologram Synthesis
        1. 9.6.3.1 Diffraction Specific Holography
      4. 9.6.4 Adaptive Holographic Displays
        1. 9.6.4.1 Discussion
    7. 9.7 3D MEDIA ENCODING
      1. 9.7.1 Light Field Encoding
      2. 9.7.2 Camera Array (Multiview) Encoding
      3. 9.7.3 Holographic Millimeter-Wave Encoding
    8. 9.8 SUMMARY
  20. CHAPTER 10 ■ Near-Eye Displays (NED)
    1. 10.1 INTRODUCTION
    2. 10.2 EYE PHYSIOLOGY
    3. 10.3 BRIGHTNESS AND POWER CONSUMPTION
    4. 10.4 DISPLAY TECHNOLOGIES FOR NEAR-EYE DISPLAYS
    5. 10.5 EXAMPLES OF NEAR-EYE DISPLAYS
      1. 10.5.1 View-Covering Displays
      2. 10.5.2 Semicovering Displays
      3. 10.5.3 Optical See-Through Displays
      4. 10.5.4 Additional Components
    6. 10.6 COMBINER MIRRORS
      1. 10.6.1 Dichroic Combiners
      2. 10.6.2 Holographic Combiners
      3. 10.6.3 Diffractive Combiners
    7. 10.7 OPTICS DESIGN
      1. 10.7.1 Self-Adaptation (Collimated Near-Eye Display)
      2. 10.7.2 Exit Pupil
      3. 10.7.3 Free-Form Optics
      4. 10.7.4 Free-Form Displays
      5. 10.7.5 A Straightforward Mirror Synthesis
    8. 10.8 ON-AXIS NED
    9. 10.9 LASER DISPLAYS
      1. 10.9.1 A Classical Laser Scanner Design
      2. 10.9.2 Laser Display with Curved Mirror
      3. 10.9.3 Exit Pupil with Laser Scanners
      4. 10.9.4 Multi Resolution Scanners
    10. 10.10 SMART NED
      1. 10.10.1 Smart Displays for Fast Motion Response
      2. 10.10.2 Multi Resolution Smart Displays
    11. 10.11 FOCUS AND ACCOMMODATION
      1. 10.11.1 Ghost Objects
    12. 10.12 LIGHT FIELD NED
      1. 10.12.1 Parallax Barrier NED
      2. 10.12.2 Bragg Mirror Array NED
      3. 10.12.3 The Pinlight Display
    13. 10.13 HOLOGRAPHIC IMAGE GENERATION FOR NED
      1. 10.13.1 Holographic Scanners
      2. 10.13.2 Holographic Near-Eye Displays
    14. 10.14 ADVANCED HOE DESIGNS
      1. 10.14.1 Wave Guides
        1. 10.14.1.1 Lumus
        2. 10.14.1.2 WaveOptics
        3. 10.14.1.3 Microsoft Hololens
      2. 10.14.2 The Quantum Display
      3. 10.14.3 A Multiple Depth Plane Display
    15. 10.15 CONTACT LENS DISPLAYS
      1. 10.15.1 Contact Lens-Supported Displays
    16. 10.16 ADAPTIVE DISPLAYS AND EYE TRACKING
      1. 10.16.1 Adaptation Requirements
      2. 10.16.2 Eye Tracking
        1. 10.16.2.1 Optical Constructions with Eye Trackers
        2. 10.16.2.2 Combining Eye Tracking with SLMs
      3. 10.16.3 Retina Tracking
      4. 10.16.4 Dynamic Image Linearization
      5. 10.16.5 Micromotors
        1. 10.16.5.1 Piezo Motors
        2. 10.16.5.2 Artificial Muscles
    17. 10.17 IMAGE INTEGRATION
      1. 10.17.1 Optical Compensation
      2. 10.17.2 Eyetaps and Video See-Through
      3. 10.17.3 Mask Displays
        1. 10.17.3.1 Pupil Size
        2. 10.17.3.2 Technologies for Mask Displays
    18. 10.18 SUMMARY
  21. CHAPTER 11 ■ Discussion and Outlook
    1. 11.1 INTRODUCTION
    2. 11.2 NEXT STEPS IN DISPLAY TECHNOLOGY
    3. 11.3 A SHORT REFLECTION ON DISPLAYS
    4. 11.4 BRAIN-COMPUTER INTERFACES – THE ULTIMATE SOLUTION?
      1. 11.4.1 Retinal Implants
      2. 11.4.2 Neural Implants
      3. 11.4.3 Nanobots
    5. 11.5 CONCLUSION
  22. APPENDIX A: PERCEPTUAL DISPLAY CALIBRATION
    1. A.1 DISPLAY MODELS
      1. A.1.1 amma and sRGB
      2. A.1.2 Color Transformation
      3. A.1.3 amma-Offset-Gain Model
      4. A.1.4 Other Display Models
    2. A.2 VISUAL DISPLAY CALIBRATION
      1. A.2.1 amma Calibration
      2. A.2.2 Color Calibration
    3. A.3 CONTRAST SENSITIVITY
      1. A.3.1 Contrast Constancy
      2. A.3.2 Thresholds across the Luminance Range
    4. A.4 QUANTIZATION AND BIT-DEPTH
      1. A.4.1 Quantization Errors
      2. A.4.2 Perceptual Transfer Functions
    5. A.5 SUMMARY
  23. BIBLIOGRAPHY
  24. INDEX

Product information

  • Title: Displays, 2nd Edition
  • Author(s): Rolf R. Hainich, Oliver Bimber
  • Release date: December 2016
  • Publisher(s): A K Peters/CRC Press
  • ISBN: 9781315350363