O'Reilly logo

Elements of Quantum Computation and Quantum Communication by Anirban Pathak

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Bibliography
[1] N. Gershenfeld, The physics of information technology, Cambridge
University Press, Cambridge, UK (2002).
[2] C. E. Shannon, A mathematical theory of communication, The Bell
System Technical Journal, 27 (1948) 379–423 and 623–656.
[3] R. Landauer, Information is physical, Proc. Workshop on Physics and
Computation PhysComp 92 (IEEE Comp. Sci. Press, Los Alamitos,
CA, 1993) 1-4.
[4] A. Steane, Quantum computing, Rep. Prog. Phys. 61 (1998) 117-173,
quant-ph/9708022.
[5] R. Landauer, Irreversibility and heat generation in the computing
process, IBM J. Res. Dev. 5 (1961) 183-191.
[6] C. H. Bennett, Logical reversibility of computation, IBM J. Res. Dev.
17 (1973) 525-532.
[7] S. Lloyd, Rolf Landauer (1927-99): Head and heart of the physics of
information, Nature 400 (1999) 720-720.
[8] V. Vedral, Introduction to quantum information science, Oxford Uni-
versity Press, New York (2006).
[9] A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys.
Rev. Lett. 67 (1991) 661-663.
[10] R. Feynman, Simulating physics with computers, Int. J. Theo. Phys.
21 (1982) 467-488.
[11] S. Wiesner, Conjugate coding, ACM SIGACT News 15 (1983) 78-88.
[12] P. Benioff, The computer as a physical system: A microscopic quan-
tum mechanical Hamiltonian model of computers as represented by
Turing machines, J. Stat. Phys. 22 (1980) 563-591.
309
310 Bibliography
[13] P. Benioff, Quantum mechanical models of Turing machines that dis-
sipate no energy, Phys. Rev. Lett. 48 (1982) 1581–1585.
[14] P. Benioff, Quantum mechanical Hamiltonian models of Turing ma-
chines, J. Stat. Phys. 29 (1982) 515-546.
[15] P. Benioff, Quantum mechanical Hamiltonian models of discrete pro-
cesses that erase their own histories: Application to Turing machines,
Int. J. Theo. Phys. 21 (1982) 177-201.
[16] W. K. Wootters and W. H. Zurek, A single quantum cannot be
cloned, Nature 299 (1982) 802-803.
[17] D. Dieks, Communication by EPR devices, Phys. Lett. A 92 (1982)
271-272.
[18] C. H. Bennett and G. Brassed, Quantum cryptography: Public key
distribution and coin tossing, Proceedings of the IEEE International
Conference on Computers, Systems, and Signal Processing, Banga-
lore, India (1984) 175-179.
[19] D. Deutsch, Quantum theory, the Church-Turing principle and the
universal quantum computer, Proceedings of the Royal Society of
London; Series A, Mathematical and Physical Sciences, 400 (1985)
97-117.
[20] C. H. Bennett and S. J. Wiesner, Communication via one- and two-
particle operations on Einstein-Podolsky Rosen states, Phys. Rev.
Lett. 69 (1992) 2881-2884.
[21] C. H. Bennett et al., Teleporting an unknown quantum state via dual
classical and Einstein-Podolsky-Rosen Channels, Phys. Rev. Lett. 70
(1993) 1895-1899.
[22] P.W. Shor, Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer, in Proc. 35th Annual
Symp. on Foundations of Computer Science, (1994) Santa Fe, IEEE
Computer Society Press; quant-ph/9508027.
[23] B. Schumacher, Quantum coding, Phys. Rev. A 51 (1995) 2738–2747.
[24] P. W. Shor, Scheme for reducing decoherence in quantum computer
memory, Phys. Rev. A 52 (1995) R2493-R2496.
[25] R. Laflamme, C. Miquel, J. P. Paz and W. H. Zurek, Perfect quantum
error correcting code, Phys. Rev. Lett. 77 (1996) 198–201, quant-
ph/9602019v1.
Bibliography 311
[26] P. W. Shor, Fault-tolerant quantum computation, in Proc. 37th An-
nual Symposium on Foundations of Computer Science (1996) 55-65,
quant-ph/9605011.
[27] L. K. Grover, Quantum mechanics helps in searching for a needle in
a haystack, Phys. Rev. Lett. 79 (1997) 325-328, quant-ph/9706033.
[28] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter
and A. Zeilinger, Experimental quantum teleportation, Nature 390
(1997) 575-579.
[29] I. L. Chuang, N. Gershenfeld and M. Kubinec, Experimental imple-
mentation of fast quantum searching, Phys. Rev. Lett. 80 (1998)
3408–3411.
[30] L. M. K. Vandersypen, M. Steffen, M. H. Sherwood, C. S. Yannoni,
G. Breyta, and I. L. Chuang, Implementation of a three-quantum-
bit search algorithm, Appl. Phys. Lett. 76 (2000) 646-648; quant-
ph/9910075v2.
[31] D. P. DiVincenzo, The physical implementation of quantum com-
putation, Fortschritte der Physik, 48 (2000) 771-783, quant-
ph/0002077v3.
[32] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, R.
Cleve and I. L. Chuang, Experimental realization of an order-finding
algorithm with an NMR quantum computer, Phys. Rev. Lett. 85
(2000) 5452–5455, quant-ph/0007017v2.
[33] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M.
H. Sherwood and I. L. Chuang, Experimental realization of Shor’s
quantum factoring algorithm using nuclear magnetic resonance, Na-
ture 414 (2001) 883-887, quant-ph/0112176v1.
[34] Z. Yuan, C. Gobby, and A. J. Shields, Quantum key dis-
tribution over distances as long as 101 km, (2003) DOI:
10.1109/QELS.2003.1276483.
[35] H. affner et al., Scalable multiparticle entanglement of trapped ions,
Nature 438 (2005) 643-646, quant-ph/0603217.
[36] A. Mirza and F. Petruccione, Realizing long-term quantum cryptog-
raphy, J. Opt. Soc. Am. B, 27 (2010) A185-A188.
[37] X. M. Jin et al., Experimental free-space quantum teleportation, Na-
ture Photonics, 4 (2010) 376-381.
[38] Juan Yin et al., Quantum teleportation and entanglement distri-
bution over 100-kilometre free-space channels, Nature 488 (2012)
185–188.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required