Short-Rate Term Structure Models


Director, Financial Engineering, Andrew Davidson & Co., Inc.

Abstract: Market randomness makes the fair value of a financial instrument an expectation. It also requires a rigorous quantification of the dynamics of interest rates; that is, a well-defined interest rate model. Prices of interest rate options and options embedded in bonds such as corporate or agency callable debts, mortgage-backed securities, and asset-backed securities will firmly depend on this modeling work. Contemporary interest rate models employ the available information about currently observed forward rates and vanilla European options and are “calibrated” to them. The relationships between bond rates should preclude arbitrage. Some analytically tractable models ensure these properties explicitly. Selecting the “best” term structure model is becoming more a conscientious task and less a matter of taste. Measuring “volatility skew” for widely traded swaptions is a simple technique that yields rich results. Another method is computing volatility indexes produced by different models and tracking their stability. Recent trading history confirms normalization of the swaption market making the Hull-White model, the extended Cox-Ingersoll-Ross model, or the squared Gaussian model more attractive than formerly popular lognormal models. Single-factor models cannot value accurately curve options or some exotic derivatives that are exposed to the yield curve shape ...

Get Encyclopedia of Financial Models III now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.