Bayesian Estimation of ARCH-Type Volatility Models

BILIANA S. GÜNER, PhD

Assistant Professor of Statistics and Econometrics, Ozyegin University, Turkey

SVETLOZAR RACHEV, PhD, Dr Sci

Frey Family Foundation Chair Professor, Department of Applied Mathematics and Statistics, Stony Brook University, and Chief Scientist, FinAnalytica

JOHN S. J. HSU, PhD

Professor of Statistics and Applied Probability, University of California, Santa Barbara

FRANK J. FABOZZI, PhD, CFA, CPA

Professor of Finance, EDHEC Business School

Abstract: Empirical evidence abounds that asset returns exhibit characteristics such as volatility clustering, asymmetry, and heavy-tailedness. Volatility clustering describes the tendency of returns to alternate between periods of high volatility and low volatility. In addition, volatility responds asymmetrically to positive and negative return shocks—it tends to be higher when the market falls than when it rises. The nonconstancy of volatility has been suggested as an underlying reason for returns’ fat tails. Volatility models attempt to systematically explain these stylized facts about asset returns. The Bayesian methodology offers distinct advantages over the classical framework in estimating volatility models. Parameter restrictions, such as stationarity restriction, are notoriously difficult to handle within the frequentist setting and straightforward to implement in the Bayesian one. The MCMC numerical simulation methods facilitate greatly the estimation of complex ...

Get Encyclopedia of Financial Models I now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.