1

Eigenvalues and Eigenvectors

1.1 Introduction

In this chapter we will consider polynomials whose coefficients are not real numbers but n-square matrices, find eigenvalues and eigenvectors of a matrix, state and prove an important theorem known as the Cayley–Hamilton Theorem and see how it can be used to find powers of square matrices and inverses of nonsingular matrices.

1.1.1 Matrix Polynomial

If P0, P1, …, Pm ( 0) are n-square matrices, then an expression of the form

 

image

 

is called a matrix polynomial of degree ‘m’.

E.g.

 

image

 

Then

 

 

is ...

Get Engineering Mathematics, Volume 2 now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.