114 Equivalence and Noninferiority Tests
Hypotheses:
H
tt
t:
er
er er
0
22
0
0
22
))
((
µ−µ
σ+σ
=
δ
σ+σ
H
tt
t:
er
er er
1
22
0
0
22
))
((
µ−µ
σ+σ
≤γ =
δ
σ+σ
Data:
t
i
= the ith value of a sequencing variable (often time), for i = 1, n
f
e
(t
i
) = observation of one of two sequences sampled at t
i
f
r
(t
i
) = observation of the other of two sequences sampled at t
i
ft ft()
i
n
ei ri
2
1
2
()
()
ψ=
=
= the sum of squared differences between the
two sequences
ˆˆ
er
22
σ+σ=
an estimate of the variance of paired differences between the
two sequences
Critical value(s):
Reject H
0
if:
ψ
σ+σ
λ=
δ
σ+σ
−β
Fnn
n
ˆˆ
,,
er
er
2
22
10
0
2
22
where
λ=
δ
σ+σ
−β
Fnn
n
,,
er
10
0
2
22
is the 100(1 – β) percent percentile of a noncentral F-distribution with n degrees
of freedom in the numerator and denominator, and numerator noncentrality
n
n
er
0
0
2
22
0
2
λ=
δ
σ+σ
.
In other words, since variability is unknown, the noncentrality parameter
could be specied in standard deviation (of the difference) units.
115Comparing Sequences of Points
Discussion:
If
()
()
() () ()
−= −η Varf tftVar DVar
ei ri
ie
r
22
then the maximum likelihood estimate of the variance of the difference
f
e
(t
i
) − f
r
(t
i
) is
n
DD
ˆˆ
1
er
i
n
i
22
1
2
()
σ+σ=
=
and
D
n
D
1
i
n
i
1
=
=
.
The test statistic
ˆˆ
er
2
22
ψ
σ+σ
has a noncentral F-distribution with n degrees of freedom in both numerator
and denominator, and noncentraility:
n
n
er
0
0
2
22
0
2
λ=
δ
σ+σ
(Johnson, Kotz, and Balakrishnan, 1995).
Example:
From the example for Test 9.1,
ft ft 280.6508
i
n
ei ri
2
1
2
()
() ()
ψ= −≈
=
.
The estimate of noise variance is
n
DD
ˆˆ
1
4.96
er
i
n
i
22
1
2
()
σ+σ= −≈
=
.
The test statistic is
ˆˆ
280.6508
4.9582
56.6034
er
2
22
ψ
σ+σ
≈≈
.
116 Equivalence and Noninferiority Tests
With:
0.33
3.33
0.1808
er
0
0
22
γ=
δ
σ+σ
=≈
and n = 60, the “null” noncentrality is
n
n 60 .1808
1.9622
er
0
0
2
22
0
22
()
λ=
δ
σ+σ
≈≈
.
The critical value from the noncentral F-distribution with n = 60 degrees of
freedom in both numerator and denominator is approximately 1.5843. Since
56.6034 > 1.5843, the null is not rejected. The power curve for this example is
given in Figure9.4.
Condence interval formulation:
An upper 100(1 – β) percent condence limit on
sup
tt()
er
er
22
()
γ=
µ−µ
σ+σ
0.1
0
1
0.9
0.8
0.7
0.6
0.5
Power
0.4
0.3
0.2
0.1
0.2 0.3 0.4 0.5
Gamma alt.
0.6 0.7 0.8 0.9
1
FIGURE 9.4
Test 9.2, power curve for comparing two sequences, variability unknown.
117Comparing Sequences of Points
can be derived as follows. First, nd the value, λ
U
, the largest value of the
noncentrality parameter such that
Fnn
ˆˆ
|,
,1
er
U
2
22
ψ
σ+σ
λ
=−
β
where F(.) is the cumulative distribution function of the noncentral F with
n degrees of freedom in both numerator and denominator. Then compute:
n
U
U
1
2
γ=
λ
which is an upper 100(1 – β) percent condence limit for γ.
Computational considerations:
SAS code
libname stuff 'H:\Personal Data\Equivalence & Noninferiority\
Programs & Output';
data calc;
set stuff.d20121116_test_9_2_example_data;
diff = fe - fc;
diffsq = diff**2;
run;
proc print data = calc;
run;
proc means data = calc;
var diff diffsq;
output out = onemean SUM = sdiff sdiffsq VAR = vdiff N =
ndiff;
run;
data outcalc;
set onemean;
delsig = 5;
nc0 = ndiff*delsig**2;
beta = 0.05;
psisq = sdiffsq/vdiff;
f_crit = finv(1-beta,ndiff,ndiff,nc0);
run;
118 Equivalence and Noninferiority Tests
proc print data = outcalc;/* has vars sdiff sdiffsq vdiff
ndiff delsig nc0 beta psisq f_crit */
run;
The SAS System 11:02 Friday, November 16, 2012 3
Obs time fc fe diff diffsq
1 1 10.0000 11.0749 1.07488 1.15536
2 2 5.9697 5.0135 -0.95619 0.91431
3 3 1.5610 1.6425 0.08156 0.00665
4 4 5.7207 5.8904 0.16973 0.02881
5 5 8.5700 8.4026 -0.16740 0.02802
6 6 9.8114 9.3124 -0.49895 0.24895
7 7 13.4625 13.9105 0.44803 0.20073
8 8 17.4663 16.6408 -0.82550 0.68145
9 9 19.5568 20.0469 0.49017 0.24027
10 10 18.9278 20.6939 1.76616 3.11933
11 11 22.5127 23.0164 0.50366 0.25367
12 12 22.4253 23.7516 1.32634 1.75918
13 13 14.7594 13.0602 -1.69920 2.88727
14 14 10.6493 11.0431 0.39383 0.15510
15 15 11.3332 10.6330 -0.70021 0.49029
16 16 8.2396 7.9960 -0.24355 0.05932
17 17 9.5967 8.8327 -0.76401 0.58371
18 18 10.6682 12.3575 1.68934 2.85388
19 19 12.2426 12.3369 0.09434 0.00890
20 20 17.9369 19.3441 1.40723 1.98031
21 21 12.4793 12.8372 0.35789 0.12808
22 22 11.5343 12.3369 0.80261 0.64418
23 23 16.0164 14.3267 -1.68972 2.85514
24 24 18.7508 18.9056 0.15478 0.02396
25 25 19.8442 19.3896 -0.45452 0.20659
26 26 18.9532 19.5501 0.59686 0.35624
27 27 12.0322 12.8241 0.79197 0.62721
28 28 16.4105 17.6849 1.27436 1.62401
29 29 8.5825 7.1428 -1.43971 2.07277
30 30 2.1924 2.2532 0.06076 0.00369
31 31 -1.5464 -3.1166 -1.57019 2.46550
32 32 -4.9271 -4.3207 0.60640 0.36772
33 33 -4.8922 -5.6441 -0.75185 0.56528
34 34 -7.9586 -9.0416 -1.08294 1.17276
35 35 -8.2935 -7.9490 0.34451 0.11868
36 36 -1.0380 -0.6618 0.37619 0.14152
37 37 -3.5019 -1.9691 1.53274 2.34928
38 38 -9.2971 -8.9091 0.38805 0.15058
39 39 -8.2664 -9.5914 -1.32503 1.75570
40 40 -10.0305 -9.7129 0.31761 0.10088

Get Equivalence and Noninferiority Tests for Quality, Manufacturing and Test Engineers now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.