Video description
Use FastAPI to expose an HTTP API for fast live predictions using an ONNX Machine Learning Model. FastAPI is a Python web framework that provides easy development of
documented HTTP APIs by offering self-documented endpoints with Swagger - a tool to describe, document, and use RESTful web services.
Learn how to quickly put together an API which validates requests, and self-documents its endpoints using OpenAPI via Swagger. Quickly produce a robust interface for others to consume
your Machine Learning model by following core best-practices of MLOps.
Parts of this video cover the basics of packaging Machine Learning models, as covered in the Practical MLOps book.
Topics include:
* Create a Python project to serve live predictions using FastAPI
* Use a Dockerfile to package the model and the API using Docker containerization
* With minimal Python code, expose an ONNX model to perform sentiment analysis over an HTTP endpoint
* Dynamically interact with the API using the self-documented endpoint in the container.
Useful links:
* Demo Github Repository with sample code
* Practical MLOps book
* FastAPI Intro tutorial
* RoBERTa ONNX Model for sentiment analysis
Table of contents
Product information
- Title: Fast, documented Machine Learning APIs with FastAPI
- Author(s):
- Release date: July 2021
- Publisher(s): Pragmatic AI Solutions
- ISBN: 50117VIDEOPAIML
You might also like
book
Clean Code: A Handbook of Agile Software Craftsmanship
Even bad code can function. But if code isn't clean, it can bring a development organization …
video
Python Fundamentals
51+ hours of video instruction. Overview The professional programmer’s Deitel® video guide to Python development with …
book
40 Algorithms Every Programmer Should Know
Learn algorithms for solving classic computer science problems with this concise guide covering everything from fundamental …
book
Tiny Python Projects
The projects are tiny, but the rewards are big: each chapter in Tiny Python Projects challenges …