#### 9.6.3.1 The deformation-temperature-electric field-magnetic field formulation

In this formulation, F, Θ, e*, and h* are the independent variables. We define the energy potential EFΘeh as the Legendre transformation of internal energy $ε=ε˘(F,η,p*/ρ,m*/ρ)$ with respect to the thermal, electrical, and magnetic variables, from η to Θ, p*/ρ to e*, and m*/ρ to h*, i.e.,

${E}^{F\text{Θ}\mathit{eh}}=\epsilon -\text{Θ}\eta -{\mathbf{e}}^{*}·\frac{{\mathbf{p}}^{*}}{\rho }-{\mu }_{\text{o}}{\mathbf{h}}^{*}·\frac{{\mathbf{m}}^{*}}{\rho }.$

(9.71)

Refer to Table 9.4. Taking the rate of (9.71) gives

${\stackrel{.}{E}}^{F\text{Θ}\mathit{eh}}=\stackrel{.}{\epsilon }-\text{Θ}\stackrel{.}{\eta }-\eta \stackrel{.}{\text{Θ}}-{\mathbf{e}}^{*}·\stackrel{·}{\overline{\left(\frac{{\mathbf{p}}^{*}}{\rho }\right)}}-\frac{{\mathbf{p}}^{*}}{\rho }·{\stackrel{.}{\mathbf{e}}}^{*}-{\mu }_{\text{o}}{\mathbf{h}}^{*}·\stackrel{·}{\overline{\left(\frac{{\mathbf{m}}^{*}}{\rho }\right)}}-{\mu }_{\text{o}}\frac{{\mathbf{m}}^{*}}{\rho }·{\stackrel{.}{\mathbf{h}}}^{*},$

and use of this result in (9.61 ...

Get Fundamentals of Continuum Mechanics now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.