v
Contents
Preface.......................................................................................................................xi
Biographical Note .................................................................................................. xiii
Chapter 1 Introduction ..........................................................................................1
1.1 Prole of Multiple Criterion Decision Making .........................1
1.2 Historical Development of Multiple Attribute Decision
Making ......................................................................................3
1.3 Historical Development of Multiple Objective Decision
Making ......................................................................................6
1.4 Introduction to Fuzzy Sets .........................................................8
1.4.1 Basic Concepts .............................................................8
1.4.2 Fuzzy Arithmetic Operations .....................................10
1.4.2.1 Extension Principle .....................................10
1.4.2.2 α-Cut Arithmetic ........................................ 11
1.4.3 Ranking Fuzzy Numbers ........................................... 11
1.5 Outline of the Book ................................................................. 12
SECTION I Concepts and Theory of Multi-
Objective Decision Making
Chapter 2 Multi-Objective Evolutionary Algorithms ......................................... 17
2.1 Concepts of Genetic Algorithms ............................................. 17
2.2 GA Procedures ........................................................................ 18
2.2.1 String Representation ................................................. 18
2.2.2 Population Initialization ............................................. 18
2.2.3 Fitness Computation ................................................... 19
2.2.4 Genetic Operators....................................................... 19
2.2.4.1 Selection ...................................................... 19
2.2.4.2 Crossover ....................................................20
2.2.4.3 Mutation ......................................................20
2.3 Multi-Objective Evolutionary Algorithms (MOEAs) .............. 21
2.3.1 Numerical Example ....................................................22
Chapter 3 Goal Programming .............................................................................25
3.1 Goal Setting ............................................................................. 25
3.2 Weighted Goal Programming .................................................26
3.3 Lexicography Goal Programming ...........................................28
vi Contents
3.4 Min–Max (Tchebycheff) Goal Programming ......................... 30
3.5 Fuzzy Goal Programming ....................................................... 31
Chapter 4 Compromise Solution and TOPSIS ....................................................37
4.1 Compromise Solution .............................................................. 37
4.2 TOPSIS for MODM .................................................................40
4.3 Fuzzy Compromise Solution and TOPSIS ..............................42
Chapter 5 De Novo Programming and Changeable Parameters ........................47
5.1 De Novo Programming ........................................................... 47
5.2 De Novo Programming by Genetic Algorithms ...................... 51
5.3 De Novo Programming by Compromise Solution ..................52
5.4 Extensions of De Novo Programming .....................................54
5.5 MOP with Changeable Parameters ..........................................56
Model 5.1: MOP with Changeable Budgets ............................57
Model 5.2: MOP with Changeable Objective Coefcients .....59
Model 5.3: MOP with Changeable Technological
Coefcients............................................................60
Chapter 6 Multi-Stage Programming .................................................................65
6.1 Dynamic Programming ...........................................................65
6.2 Application of Multi-Stage Problem: Competence Sets ..........68
6.3 Fuzzy Multi-Stage Multi-Objective Competence Sets ............70
Appendix ............................................................................................ 74
Chapter 7 Multi-Level Multi-Objective Programming ....................................... 75
7.1 Bi-Level Programming ............................................................75
7.2 Multiple Level Programming ..................................................77
7.3 Fuzzy Programming for Multi-Level Multi-Objective
Programming ...........................................................................78
Chapter 8 Data Envelopment Analysis ...............................................................83
8.1 Traditional DEA ......................................................................83
8.2 Network DEA ..........................................................................87
8.2.1 Input-Oriented Efciency ...........................................89
8.2.2 Output-Oriented Efciency ........................................90
8.2.3 Non-Oriented Efciency ............................................90
8.3 Fuzzy Multi-Objective Programming (FMOP) to DEA .........94
8.3.1 Model 1 .......................................................................94
8.3.2 Model 2 .......................................................................96
viiContents
SECTION II Applications of Multi-Objective
Decision Making
Chapter 9 Motivation and Resource Allocation for Strategic Alliances
through the De Novo Perspective ..................................................... 101
9.1 Motivations for Strategic Alliances ....................................... 102
9.1.1 Transaction Cost Theory .......................................... 102
9.1.2 Resource-Based View .............................................. 103
9.2 Problems of Resource Allocation .......................................... 103
9.3 De Novo Perspective of Strategic Alliances ..........................105
9.4 Numerical Example ............................................................... 106
9.5 Discussion ..............................................................................109
9.6 Conclusions ............................................................................ 110
Chapter 10 Choosing Best Alliance Partners and Allocating Optimal
Alliance Resources Using Fuzzy Multi-Objective Dummy
Programming Model ........................................................................ 113
10.1 Review of Strategic Alliances ............................................... 114
10.2 Fuzzy Multiple Objective Dummy Programming ................. 116
10.2.1 Joint Venture Model ................................................. 118
10.2.2 M&A Model ............................................................. 119
10.3 Numerical Example ............................................................... 120
10.4 Discussion ..............................................................................123
10.5 Conclusions ............................................................................124
Chapter 11 Multiple-Objective Planning for Supply Chain Production and
Distribution Model: Bicycle Manufacturer ......................................125
11.1 Literature on Supply Chain and Multi-Objective
Programming for Production and Distribution .....................126
11.1.1 Relevant Supply Chain Literature ............................ 126
11.1.2 Multi-Objective and Fuzzy Multi-Objective
Programming ...........................................................127
11.1.2.1 Multi-Objective Compromise
Programming ............................................127
11.1.2.2 Weighted Multi-Objective Programming ... 128
11.1.2.3 Fuzzy Multi-Objective Programming ...... 129
11.1.2.4 Weighted Fuzzy Multi-Objective
Programming ............................................129
11.1.2.5 Two-Phase Fuzzy Multi-Objective
Programming ............................................130
11.2 Establishing Model for Bicycle Supply Chain .......................130
viii Contents
11.2.1 Basic Assumptions, Denitions, and
Establishment of Model............................................130
11.2.2 Model Construction .................................................. 131
11.2.2.1 Objective 1: Maximize Total Prot and
Competitiveness ........................................ 131
11.2.2.2 Objective 2: Maximize Level of
Customer Service Quality per Period ....... 133
11.2.3 Model Constraints .................................................... 133
11.2.3.1 Raw Material Constraint .......................... 133
11.2.3.2 Productivity Constraint .............................134
11.2.3.3 Inventory Constraint ................................. 134
11.2.3.4 Relationship of Product Distribution
and Demand .............................................. 135
11.2.3.5 Non-Negative Constraint .......................... 135
11.3 Real Empirical Case of a Bicycle Manufacturer ................... 135
11.3.1 Problem Description and Denitions ....................... 135
11.3.2 Results and Analysis ................................................136
11.3.3 Sensitivity Analyses and Discussions ...................... 139
11.4 Conclusions and Recommendations ...................................... 140
Appendix A: Max–Min Operation ................................................... 142
A.1 Determination of Ceiling and Bottom Limits of
Objectives and Constraint Equations ....................... 142
A.2 Establishment of Membership Function .................. 142
A.3 Setting Membership Function for Decision
Making Set μ
D
(x) ...................................................... 142
A.4 Turning Multiple Objectives into Single
Objective for Resolution ........................................... 143
Appendix B: Concept of Weighted Fuzzy Multi-Objective
Programming ................................................................................... 143
Chapter 12 Fuzzy Interdependent Multi-Objective Programming ..................... 145
12.1 Interdependence with Objectives........................................... 146
12.2 Fuzzy Interdependent Multi-Objective Programming .......... 148
12.3 Numerical Example ............................................................... 155
12.4 Discussion .............................................................................. 157
12.5 Conclusions ............................................................................158
Appendix .......................................................................................... 159
Chapter 13 Novel Algorithm for Uncertain Portfolio Selection ......................... 161
13.1 Possibilistic Regression ......................................................... 162
13.2 Mellin Transformation ........................................................... 163
13.3 Numerical Example ............................................................... 165
13.4 Discussion .............................................................................. 167
13.5 Conclusions ............................................................................ 170

Get Fuzzy Multiple Objective Decision Making now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.