Skip to Main Content
Hands-On Ensemble Learning with R
book

Hands-On Ensemble Learning with R

by Prabhanjan Narayanachar Tattar
July 2018
Beginner to intermediate content levelBeginner to intermediate
376 pages
9h 1m
English
Packt Publishing
Content preview from Hands-On Ensemble Learning with R

Why does ensembling work?

When using the bagging method, we combine the result of many decision trees and produce a single output/prediction by taking a majority count. Under a different sampling mechanism, the results had been combined to produce a single prediction for the random forests. Under a sequential error reduction method for decision trees, the boosting method also provides improved answers. Although we are dealing with uncertain data, which involves probabilities, we don't intend to have methodologies that give results out of a black box and behave without consistent solutions. A theory should explain the working and we need an assurance that the results will be consistent and there is no black magic about it. Arbitrary and uncertain ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Deep Learning with R

Hands-On Deep Learning with R

Rodger Devine, Michael Pawlus
Learning Bayesian Models with R

Learning Bayesian Models with R

Hari Manassery Koduvely
Advanced Machine Learning with R

Advanced Machine Learning with R

Cory Lesmeister, Dr. Sunil Kumar Chinnamgari

Publisher Resources

ISBN: 9781788624145Supplemental Content