Chapter 11. Matrix Inversion, Determinants, and Condition Numbers
LU decomposition, as described in Chapter 10, not only allows us to solve a system of linear equations, but the algorithm makes it relatively simple to compute a square matrix's inverse and determinant. In this chapter, we'll also compute the matrix's condition number, a scalar value that indicates how well-conditioned (or ill-conditioned) is the system of linear equations represented by the matrix.
A matrix's inverse and its determinant are both used in two traditional algorithms for solving systems of equations. If we have the system Ax = b to solve for x, we can use matrix algebra and multiply both sides of the equation by A−1, the inverse of A, giving us x = A−1b. The other algorithm, ...
Get Java™ Number Cruncher: The Java Programmer's Guide to Numerical Computing now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.