O'Reilly logo

Learning Data Mining with Python by Robert Layton

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Clustering ensembles

In Chapter 3, Predicting Sports Winners with Decision Trees, we looked at a classification ensemble using the random forest algorithm, which is an ensemble of many low-quality, tree-based classifiers. Ensembling can also be performed using clustering algorithms. One of the key reasons for doing this is to smooth the results from many runs of an algorithm. As we saw before, the results from running k-means are varied, depending on the selection of the initial centroids. Variation can be reduced by running the algorithm many times and then combining the results.

Ensembling also reduces the effects of choosing parameters on the final result. Most clustering algorithms are quite sensitive to the parameter values chosen for the ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required