O'Reilly logo

Learning Data Mining with Python by Robert Layton

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Application

Back on your main computer now, open the first IPython Notebook we created in this chapter—the one that we loaded the CIFAR dataset with. In this major experiment, we will take the CIFAR dataset, create a deep convolution neural network, and then run it on our GPU-based virtual machine.

Getting the data

To start with, we will take our CIFAR images and create a dataset with them. Unlike previously, we are going to preserve the pixel structure—that is,. in rows and columns. First, load all the batches into a list:

import numpy as np
batches = []
for i in range(1, 6):
    batch_filename = os.path.join(data_folder, "data_batch_{}".format(i))
    batches.append(unpickle(batch1_filename))
    break

The last line, the break, is to test the code—this will ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required