O'Reilly logo

Learning Functional Data Structures and Algorithms by Raju Kumar Mishra, Atul Khot

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Chapter 2.  Building Blocks

This chapter serves as a refresher on some fundamentals concepts.

How fast could an algorithm run? How does it fare when you have ten input elements versus a million? To answer such questions, we need to be aware of the notion of algorithmic complexity, which is expressed using the Big O notation. An O(1) algorithm is faster than O(logn), for example.

What is this notation? It talks about measuring the efficiency of an algorithm, which is proportional to the number of data items, N, being processed.

This chapter starts with a look at the O notation. Space/time trade-off is another important aspect of algorithm design. Let's look at a dynamic programming problem to better understand this fundamental notion.

Next, we will ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required