Skip to Content
Learning Probabilistic Graphical Models in R
book

Learning Probabilistic Graphical Models in R

by David Bellot
April 2016
Beginner to intermediate
250 pages
5h 38m
English
Packt Publishing
Content preview from Learning Probabilistic Graphical Models in R

Appendix A. Appendix

References

The following references were used while writing this book. We encourage those of you who want to go further into the field of probabilistic graphical models and Bayesian modeling to read at least some of them.

Many of our examples and presentations of algorithms took inspiration from these books and papers.

Books on the Bayesian theory

  • Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B, Vehtari, A., and Rubin, D.B.. Bayesian Data Analysis, 3rd Edition. CRC Press. 2013. This is a reference book on Bayesian modeling covering topics from the most fundamental aspects to the most advanced, with the focus on modeling and also on computations.
  • Robert, C.P.. The Bayesian Choice: From Decision-Theoretic Foundations to Computational ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Learning Bayesian Models with R

Learning Bayesian Models with R

Hari Manassery Koduvely
Deep Learning for Chest Radiographs

Deep Learning for Chest Radiographs

Yashvi Chandola, Jitendra Virmani, H.S Bhadauria, Papendra Kumar

Publisher Resources

ISBN: 9781784392055Supplemental Content