Skip to Content
Learning Probabilistic Graphical Models in R
book

Learning Probabilistic Graphical Models in R

by David Bellot
April 2016
Beginner to intermediate content levelBeginner to intermediate
250 pages
5h 38m
English
Packt Publishing
Content preview from Learning Probabilistic Graphical Models in R

Summary

In this first chapter we learned the base concepts of probabilities

We saw how and why they are used to represent uncertainty about data and knowledge, while also introducing the Bayes formula. This is the most important formula to compute posterior probabilities—that is, to update our beliefs and knowledge about a fact when new data is available

We saw what a joint probability distribution is and learnt that they can quickly become too complex and intractable to deal with. We learned the basics of probabilistic graphical models as a generic framework to perform tractable, efficient, and easy modeling with probabilistic models. Finally, we introduced the different types of probabilistic graphical model and learned how to use R packages to ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Learning Bayesian Models with R

Learning Bayesian Models with R

Hari Manassery Koduvely
Deep Learning for Chest Radiographs

Deep Learning for Chest Radiographs

Yashvi Chandola, Jitendra Virmani, H.S Bhadauria, Papendra Kumar

Publisher Resources

ISBN: 9781784392055Supplemental Content