Skip to Content
Learning Probabilistic Graphical Models in R
book

Learning Probabilistic Graphical Models in R

by David Bellot
April 2016
Beginner to intermediate content levelBeginner to intermediate
250 pages
5h 38m
English
Packt Publishing
Content preview from Learning Probabilistic Graphical Models in R

Learning with hidden variables – the EM algorithm

The last part of this chapter is an important algorithm that we will use again in the course of this book. It is a very general algorithm used to learn probabilistic models in which variables are hidden; that is, some of the variables are not observed. Models with hidden variables are sometimes called latent variable models. The EM algorithm is a solution to this kind of problem and goes very well with probabilistic graphical models.

Most of the time, when we want to learn the parameters of a model, we write an objective function, such as the likelihood function, and we aim at finding the parameters that maximize this function. Generally speaking, one could simply use a black-box numerical optimizer ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Learning Bayesian Models with R

Learning Bayesian Models with R

Hari Manassery Koduvely
Deep Learning for Chest Radiographs

Deep Learning for Chest Radiographs

Yashvi Chandola, Jitendra Virmani, H.S Bhadauria, Papendra Kumar

Publisher Resources

ISBN: 9781784392055Supplemental Content