Skip to Content
Learning Probabilistic Graphical Models in R
book

Learning Probabilistic Graphical Models in R

by David Bellot
April 2016
Beginner to intermediate content levelBeginner to intermediate
250 pages
5h 38m
English
Packt Publishing
Content preview from Learning Probabilistic Graphical Models in R

Summary

In this chapter we saw how to compute the parameters of a graphical model by using the maximum likelihood estimation.

The reader should note however that this approach is not Bayesian and could be improved by setting prior distributions over the parameters of the graphical models. This could be used to include more domain knowledge and help in obtaining better estimations.

When the data is not fully observed and variables are hidden, we learned how to use the very powerful EM algorithm. We also saw a full implementation of a learning algorithm in R for a fully observed graph.

We would like, at this point, to encourage the reader to use the ideas presented in this chapter to extend and improve his or her own learning algorithms. The most important ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Learning Bayesian Models with R

Learning Bayesian Models with R

Hari Manassery Koduvely
Deep Learning for Chest Radiographs

Deep Learning for Chest Radiographs

Yashvi Chandola, Jitendra Virmani, H.S Bhadauria, Papendra Kumar

Publisher Resources

ISBN: 9781784392055Supplemental Content