3.3 Linear Independence
In this section, we look more closely at the structure of vector spaces. To begin with, we restrict ourselves to vector spaces that can be generated from a finite set of elements. Each vector in the vector space can be built up from the elements in this generating set using only the operations of addition and scalar multiplication. The generating set is usually referred to as a spanning set. In particular, it is desirable to find a minimal spanning set. By “minimal,” we mean a spanning set with no unnecessary elements (i.e., all the elements in the set are needed in order to span the vector space). To see how to find a minimal spanning set, it is necessary to consider how the vectors in the collection depend on each other. ...
Get Linear Algebra with Applications, 10th Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.