Skip to Main Content
Machine Learning Engineering on AWS
book

Machine Learning Engineering on AWS

by Joshua Arvin Lat
October 2022
Intermediate to advanced content levelIntermediate to advanced
530 pages
11h 57m
English
Packt Publishing
Content preview from Machine Learning Engineering on AWS

5

Pragmatic Data Processing and Analysis

Data needs to be analyzed, transformed, and processed first before using it when training machine learning (ML) models. In the past, data scientists and ML practitioners had to write custom code from scratch using a variety of libraries, frameworks, and tools (such as pandas and PySpark) to perform the needed analysis and processing work. The custom code prepared by these professionals often needed tweaking since different variations of the steps programmed in the data processing scripts had to be tested on the data before being used for model training. This takes up a significant portion of an ML practitioner’s time, and since this is a manual process, it is usually error-prone as well.

One of the more ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning on Kubernetes

Machine Learning on Kubernetes

Faisal Masood, Ross Brigoli

Publisher Resources

ISBN: 9781803247595Supplemental Content