16Machine Learning for Industrial Applications
16.1 Python Code for Generating Music Using Neural Networks
import numpy as np
import pandas as pd
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.keras.utils import to_categorical
# Load and preprocess data
data = pd.read_csv(‘music_data.csv’) # Your music dataset
notes = sorted(set(data[‘note’]))
note_to_int = dict((note, number) for number, note in enumerate(notes))
sequence_length = 100 # Adjust according to your data and model
architecture
network_input = []
network_output = []
for i in range(0, len(data) - sequence_length, 1):
sequence_in = data[‘note’][i:i + sequence_length]
sequence_out = data[‘note’][i + sequence_length]
network_input.append([note_to_int[char] for char in sequence_in])
network_output.append(note_to_int[sequence_out])
n_patterns = len(network_input)
network_input = np.reshape(network_input, (n_patterns, sequence_length, 1))
network_input = network_input / float(len(notes))
network_output = to_categorical(network_output)
# Define LSTM model
model = Sequential()
model.add(LSTM(
256,
input_shape=(network_input.shape[1], network_input.shape[2]),
return_sequences=True
))
model.add(Dropout(0.3))
model.add(LSTM(512, return_sequences=True))
model.add(Dropout(0.3))
model.add(LSTM(256))
model.add(Dense(256))
model.add(Dropout(0.3))
model.add(Dense(len(notes), activation=’softmax’))) ...
Get Machine Learning for Industrial Applications now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.