Skip to Content
Machine Learning for Cybersecurity Cookbook
book

Machine Learning for Cybersecurity Cookbook

by Emmanuel Tsukerman
November 2019
Intermediate to advanced content levelIntermediate to advanced
346 pages
9h 36m
English
Packt Publishing
Content preview from Machine Learning for Cybersecurity Cookbook

How it works...

We begin by reading in our dataset (step 1), which consists of the PE header information for a collection of PE files. These vary greatly, with some columns reaching hundreds of thousands of files, and others staying in the single digits. Consequently, certain models, such as neural networks, will perform poorly on such unstandardized data. In step 2, we instantiate StandardScaler() and then apply it to rescale X using .fit_transform(X). As a result, we obtained a rescaled dataset, whose columns (corresponding to features) have a mean of 0 and a variance of 1.

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Machine Learning for Cybersecurity

Hands-On Machine Learning for Cybersecurity

Soma Halder, Sinan Ozdemir
Machine Learning on Kubernetes

Machine Learning on Kubernetes

Faisal Masood, Ross Brigoli

Publisher Resources

ISBN: 9781789614671Supplemental Content