Skip to Content
Machine Learning for Cybersecurity Cookbook
book

Machine Learning for Cybersecurity Cookbook

by Emmanuel Tsukerman
November 2019
Intermediate to advanced content levelIntermediate to advanced
346 pages
9h 36m
English
Packt Publishing
Content preview from Machine Learning for Cybersecurity Cookbook

MalConv – end-to-end deep learning for malicious PE detection

One of the new developments in static malware detection has been the use of deep learning for end-to-end machine learning for malware detection. In this setting, we completely skip all feature engineering; we need not have any knowledge of the PE header or other features that may be indicative of PE malware. We simply feed a stream of raw bytes into our neural network and train. This idea was first suggested in https://arxiv.org/pdf/1710.09435.pdf. This architecture has come to be known as MalConv, as shown in the following screenshot:

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Machine Learning for Cybersecurity

Hands-On Machine Learning for Cybersecurity

Soma Halder, Sinan Ozdemir
Machine Learning on Kubernetes

Machine Learning on Kubernetes

Faisal Masood, Ross Brigoli

Publisher Resources

ISBN: 9781789614671Supplemental Content