Skip to Content
Machine Learning for Cybersecurity Cookbook
book

Machine Learning for Cybersecurity Cookbook

by Emmanuel Tsukerman
November 2019
Intermediate to advanced content levelIntermediate to advanced
346 pages
9h 36m
English
Packt Publishing
Content preview from Machine Learning for Cybersecurity Cookbook

Tracking malware drift

The distribution of malware is ever-changing. Not only are new samples released, but new types of viruses as well. For example, cryptojackers are a relatively recent breed of malware unknown until the advent of cryptocurrency. Interestingly, from a machine learning perspective, it's not only the types and distribution of malware that are evolving, but also their definitions, something known as concept drift. To be more specific, a 15 year-old virus is likely no longer executable in the systems currently in use. Consequently, it cannot harm a user, and is therefore no longer an instance of malware.

By tracking the drift of malware, and even predicting it, an organization is better able to channel its resources to the ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Machine Learning for Cybersecurity

Hands-On Machine Learning for Cybersecurity

Soma Halder, Sinan Ozdemir
Machine Learning on Kubernetes

Machine Learning on Kubernetes

Faisal Masood, Ross Brigoli

Publisher Resources

ISBN: 9781789614671Supplemental Content