Skip to Content
Machine Learning for Cybersecurity Cookbook
book

Machine Learning for Cybersecurity Cookbook

by Emmanuel Tsukerman
November 2019
Intermediate to advanced content levelIntermediate to advanced
346 pages
9h 36m
English
Packt Publishing
Content preview from Machine Learning for Cybersecurity Cookbook

Machine Learning-Based Malware Detection

In this chapter, we begin to get serious about applying data science to cybersecurity. We will begin by learning how to perform static and dynamic analysis on samples. Building on this knowledge, we will learn how to featurize samples in order to construct a dataset with informative features. The highlight of the chapter is learning how to build a static malware detector using the featurization skills we have learned. Finally, you will learn how to tackle important machine learning challenges that occur in the domain of cybersecurity, such as class imbalance and false positive rate (FPR) constraints.

The chapter covers the following recipes:

  • Malware static analysis
  • Malware dynamic analysis
  • Using machine ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Machine Learning for Cybersecurity

Hands-On Machine Learning for Cybersecurity

Soma Halder, Sinan Ozdemir
Machine Learning on Kubernetes

Machine Learning on Kubernetes

Faisal Masood, Ross Brigoli

Publisher Resources

ISBN: 9781789614671Supplemental Content