Skip to Content
Machine Learning for Cybersecurity Cookbook
book

Machine Learning for Cybersecurity Cookbook

by Emmanuel Tsukerman
November 2019
Intermediate to advanced content levelIntermediate to advanced
346 pages
9h 36m
English
Packt Publishing
Content preview from Machine Learning for Cybersecurity Cookbook

Detecting DDoS

DDoS, or Distributed Denial of Service, is an attack in which traffic from different sources floods a victim, resulting in service interruption. There are many types of DDoS attacks, falling under three general categories: application-level, protocol, and volumetric attacks. Much of the DDoS defense today is manual. Certain IP addresses or domains are identified and then blocked. As DDoS bots become more sophisticated, such approaches are becoming outdated. Machine learning offers a promising automated solution.

The dataset we will be working with is a subsampling of the CSE-CIC-IDS2018, CICIDS2017, and CIC DoS datasets (2017). It consists of 80% benign and 20% DDoS traffic, in order to represent a more realistic ratio of normal-to-DDoS ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Machine Learning for Cybersecurity

Hands-On Machine Learning for Cybersecurity

Soma Halder, Sinan Ozdemir
Machine Learning on Kubernetes

Machine Learning on Kubernetes

Faisal Masood, Ross Brigoli

Publisher Resources

ISBN: 9781789614671Supplemental Content