Skip to Content
Machine Learning for Time-Series with Python
book

Machine Learning for Time-Series with Python

by Ben Auffarth
October 2021
Beginner to intermediate
370 pages
8h 19m
English
Packt Publishing
Content preview from Machine Learning for Time-Series with Python

6

Unsupervised Methods for Time-Series

We've discussed forecasting in the previous chapter, and we'll talk about predictions from time-series in the next chapter. The performance of these predictive models is easily undermined by major changes in the data. Recognizing these changes is the domain of unsupervised learning.

In this chapter, we'll describe the specific challenges of unsupervised learning with time-series data. At the core of unsupervised learning is the extraction of structure from time-series, most importantly recognizing similarities between subsequences. This is the essence of anomaly detection (also: outlier detection), where we want to identify sequences that are notably different from the rest of the series.

Time-series data ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Time Series Forecasting with Python

Machine Learning for Time Series Forecasting with Python

Francesca Lazzeri
Introduction to Machine Learning with Python

Introduction to Machine Learning with Python

Andreas C. Müller, Sarah Guido

Publisher Resources

ISBN: 9781801819626Supplemental Content