Skip to Content
Machine Learning for Time-Series with Python
book

Machine Learning for Time-Series with Python

by Ben Auffarth
October 2021
Beginner to intermediate
370 pages
8h 19m
English
Packt Publishing
Content preview from Machine Learning for Time-Series with Python

8

Online Learning for Time-Series

In this chapter, we are going to dive into online learning and streaming data for time-series. Online learning means that we continually update our model as new data is coming in. The advantage of online learning algorithms is that they can handle the high speed and possibly large size of streaming data and are able to adapt to new distributions of the data.

We will discuss drift, which is important because the performance of a machine learning model can be strongly affected by changes to the dataset to the point that a model will become obsolete (stale).

We are going to discuss what online learning is, how data can change (drift), and how adaptive learning algorithms combine drift detection methods to adjust ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Time Series Forecasting with Python

Machine Learning for Time Series Forecasting with Python

Francesca Lazzeri
Introduction to Machine Learning with Python

Introduction to Machine Learning with Python

Andreas C. Müller, Sarah Guido

Publisher Resources

ISBN: 9781801819626Supplemental Content