Chapter 6. Building a Regression Model with Spark

In this chapter, we will build on what we covered in Chapter 5, Building a Classification Model with Spark. While classification models deal with outcomes that represent discrete classes, regression models are concerned with target variables that can take any real value. The underlying principle is very similar—we wish to find a model that maps input features to predicted target variables. Like classification, regression is also a form of supervised learning.

Regression models can be used to predict just about any variable of interest. A few examples include the following:

  • Predicting stock returns and other economic variables
  • Predicting loss amounts for loan defaults (this can be combined with a classification ...

Get Machine Learning with Spark now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.