Skip to Main Content
Машинное обучение с PyTorch и Scikit-Learn
book

Машинное обучение с PyTorch и Scikit-Learn

by Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili
May 2024
Beginner to intermediate content levelBeginner to intermediate
688 pages
26h
Russian
Foliant
Content preview from Машинное обучение с PyTorch и Scikit-Learn
Графовые нейронные сети: выявление зависимостей в структурированных графовых данных
625
# пакет пр едставляет со бой список слов арей, каждый из которых
# содержит представлени е и метку графа
def collate_graphs(batch):
adj_mats = [graph['A'] for graph in batch]
sizes = [A.size(0) for A in adj_mats]
tot_size = sum(sizes)
# созд аем пакетную матрицу
batch_mat = get_batch_tensor(sizes)
# объе диняем матриц ы признаков
feat_mats = torch.cat([graph['X'] for graph in batch], dim=0)
# объе диняем метки
labels = torch.cat([graph['y'] for graph in batch], dim=0)
# ообъ единяем матри цы смежности
batch_adj = torch.zeros([tot_size, tot_size], ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

CompTIA Network+ -- Vorbereitung auf die Prüfung N10-009

CompTIA Network+ -- Vorbereitung auf die Prüfung N10-009

Markus Kammermann

Publisher Resources

ISBN: 9786011100342