Skip to Main Content
Машинное обучение с PyTorch и Scikit-Learn
book

Машинное обучение с PyTorch и Scikit-Learn

by Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili
May 2024
Beginner to intermediate content levelBeginner to intermediate
688 pages
26h
Russian
Foliant
Content preview from Машинное обучение с PyTorch и Scikit-Learn
108 Глава 3
Однако примесь Джини будет способствовать разделению по сценарию B (IG
G
= 0.16)
который действительно чище по сравнению со сценарием A (IG
G
= 0.125):
Критерий энтропии тоже будет отдавать предпочтение сценарию B (IG
H
= 0,31) по
сравнению со сценарием A (IG
H
= 0,19):
Для более наглядного сравнения трех различных критериев примесей, которые мы об-
суждали ранее, построим график индексов примесей для диапазона вероятностей [0, 1]
для класса 1. Обратите внимание, что мы добавляем на график масштабированную вер-
сию энтропии (энтропия/2) чтобы показать, что примесь Джини является промежуточ-
ной мерой между энтропией и ошибкой ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

CompTIA Network+ -- Vorbereitung auf die Prüfung N10-009

CompTIA Network+ -- Vorbereitung auf die Prüfung N10-009

Markus Kammermann

Publisher Resources

ISBN: 9786011100342