Video description
Deep learning has been especially successful in computer-vision tasks such as image classification because convolutional neural nets (CNNs) can create hierarchical levels of representations in an image. One of the most remarkable advances is ResNet, the CNN that surpassed human-level accuracy for the first time in history.
ImageNet competition has become the de facto benchmark for image classification in the research community. The “small” ImageNet data contains more than 1.2 million images distributed in 1,000 classes.
Miguel González-Fierro explains how to train a state-of-the-art deep neural network, ResNet, using Microsoft RSever and MXNet with the ImageNet dataset. (While most of the deep learning libraries are programmed in C++ and Python, only MXNet offers an API for R programmers.) Miguel then demonstrates how to operationalize this training for real-world business problems related to image classification.
Product information
- Title: Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines
- Author(s):
- Release date: June 2018
- Publisher(s): O'Reilly Media, Inc.
- ISBN: 9781492037309
You might also like
book
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition
Through a recent series of breakthroughs, deep learning has boosted the entire field of machine learning. …
book
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. …
audiobook
Software Architecture for Busy Developers
A quick start guide to learning essential software architecture tools, frameworks, design patterns, and best practices …
video
React - The Complete Guide (Includes Hooks, React Router, and Redux) - Second Edition
**This course is now updated for the latest version of React—React 18** React.js is the most …