O'Reilly logo

Mastering Java Machine Learning by Krishna Choppella, Dr. Uday Kamath

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Incremental supervised learning

This section introduces several techniques used to learn from stream data when the true label for each instance is available. In particular, we present linear, non-linear, and ensemble-based algorithms adapted to incremental learning, as well as methods required in the evaluation and validation of these models, keeping in mind that learning is constrained by limits on memory and CPU time.

Modeling techniques

The modeling techniques are divided into linear algorithms, non-linear algorithms, and ensemble methods.

Linear algorithms

The linear methods described here require little to no adaptation to handle stream data.

Online linear models with loss functions

Different loss functions such as hinge, logistic, and squared ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required